Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Atmospheric variation of nitrous acid at different sites in Europe

Karin Acker A B and Detlev Möller A
+ Author Affiliations
- Author Affiliations

A Brandenburgische Technische Universität Cottbus, Lehrstuhl Luftchemie und Luftreinhaltung, D-03013 Cottbus, Germany.

B Corresponding author. Email: ack@btu-lc.fta-berlin.de

Environmental Chemistry 4(4) 242-255 https://doi.org/10.1071/EN07023
Submitted: 26 February 2007  Accepted: 30 May 2007   Published: 16 August 2007

Environmental context. Nitrous acid (HNO2) is an important source of the hydroxyl radical (OH), the most important daytime oxidising species that contributes to the formation of ozone as well as of other secondary pollutants in the troposphere. Understanding the sources and sinks of HNO2 is of crucial interest for accurately modelling the chemical composition of the troposphere and predicting future trace gas concentrations.

Abstract. Nitrous acid and several other atmospheric components and variables were continuously measured during complex field experiments at seven different suburban and rural sites in Europe. HNO2 is mainly formed by heterogeneous processes and is often accumulated in the nighttime boundary layer. Our results confirm that the photolysis of HNO2 is an important source of the hydroxyl radical, not only in the early morning hours but also throughout the entire day, and is often comparable with the contribution of ozone and formaldehyde photolysis. At all research sites unexpectedly high HNO2 mixing ratios were observed during the daytime (up to several hundred ppt, or pmol mol–1). Moreover, surprisingly, the HNO2 mixing ratio at the three mountain sites often showed a broad maximum or several distinct peaks at midday and lower mixing ratios during the night. Assuming a quickly established photo-equilibrium between the known significant gas phase reactions, only a few ppt HNO2 should be present around noon. The ratio of known sources to sinks indicates a missing daytime HNO2 source of 160–2600 ppt h–1 to make up the balance. Based on these values and on production mechanisms proposed in the literature we hypothesise that the daytime mixing ratio levels may only be explained by a fast electron transfer onto adsorbed NO2.

Additional keywords: atmospheric chemistry, heterogeneous processes, hydroxyl radical, nitrous acid, photochemistry.


Acknowledgements

This work combines results from different joint research studies supported by the German Ministry of Education and Research (BMBF), the Deutsche Forschungsgemeinschaft (DFG) and the European Commission (EU). We thank all colleagues involved in the projects for excellent co-operation and the two anonymous reviewers for their careful revision of the manuscript.


References


[1]   R. M. Harrison , J. D. Peak , G. M. Collins , Tropospheric cycle of nitrous acid. J. Geophys. Res. 1996 , 101,  14429.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   G. Lammel , N. J. Cape , Nitrous acid and nitrite in the atmosphere. Chem. Soc. Rev. 1996 , 25,  361.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   T. R. Rasmussen , M. Brauer , S. Kjærgaard , Effects of nitrous acid exposure on human mucous membranes. Am. J. Respir. Crit. Care Med. 1995 , 151,  1504.
        | PubMed |  open url image1

[4]   A. Febo , C. Perrino , Measurement of high concentration of nitrous acid inside automobiles. Atmos. Environ. 1995 , 29,  345.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   P. J. Crutzen , P. H. Zimmermann , The changing photochemistry of the troposphere. Tellus 1991 , 43,  136.
         open url image1

[6]   Finlayson-Pitts B. J., Pitts J. N., in Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications 2000, pp. 269–272 (Academic Press: San Diego).

[7]   R. W. Stockwell , J. G. Calvert , The near ultraviolet absorption spectrum of gaseous HONO and N2O3. J. Photochem. 1978 , 8,  193.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   D. Perner , U. Platt , Detection of nitrous acid in the atmosphere by differential optical absorption. Geophys. Res. Lett. 1979 , 6,  917.
         open url image1

[9]   U. Platt , D. Perner , Direct measurements of atmospheric CH2O, HNO2, O3, NO2 and SO2 by differential optical absorption in the near UV. J. Geophys. Res. 1980 , 85,  7453.
         open url image1

[10]   G. W. Harris , W. P. L. Carter , A. M. Winer , J. N. Pitts , U. Platt , D. Perner , Observations of nitrous acid in the Los Angeles atmosphere and implications for the predictions of ozone-precursor relationships. Environ. Sci. Technol. 1982 , 16,  414.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   M. E. Jenkin , R. A. Cox , D. J. Williams , Laboratory studies of the kinetics of formation of nitrous acid from the thermal reaction of nitrogen dioxide and water vapour. Atmos. Environ. 1988 , 22,  487.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   J. G. Calvert , G. Yarwood , A. M. Dunker , An evaluation of the mechanism of nitrous acid formation in the urban atmosphere. Res. Chem. Intermediat. 1994 , 20,  463.
         open url image1

[13]   A. Febo , C. Perrino , I. Allegrini , Measurement of nitrous acid in Milan, Italy, by DOAS and diffusion denuders. Atmos. Environ. 1996 , 30,  3599.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   T. Staffelbach , A. Neftel , A. Blatter , A. Gut , M. Fahrni , J. Stählin , A. Prévôt , A. Hering , et al. Photochemical oxidant formation over Southern Switzerland, 1. Results from summer 1994. J. Geophys. Res. 1997 , 102,  23345.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   J. Kleffmann , R. Kurtenbach , J. Lörzer , P. Wiesen , N. Kalthoff , B. Vogel , H. Vogel , Measured and simulated vertical profiles of nitrous acid – Part I: Field measurements. Atmos. Environ. 2003 , 37,  2949.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   T. Staffelbach , A. Neftel , L. W. Horowitz , Photochemical oxidant formation over souther Switzerland, 2. Model results. J. Geophys. Res. 1997 , 102,  23363.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   B. Aumont , F. Chervier , S. Laval , Contribution of HONO sources to the NOx/HOx/O3 chemistry in the polluted boundary layer. Atmos. Environ. 2003 , 37,  487.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   B. Vogel , H. Vogel , J. Kleffmann , R. Kurtenbach , Measured and simulated vertical profiles of nitrous acid – Part II. Model simulations and indications for a photolytic source. Atmos. Environ. 2003 , 37,  2957.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   B. Alicke , U. Platt , J. Stutz , Impact of nitrous acid photolysis on the total hydroxyl radical budget during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono study in Milan. J. Geophys. Res. 2002 , 107,  8196.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   X. Zhou , H. J. Beine , R. E. Honrath , J. D. Fuentes , W. Simpson , P. B. Shepson , J. W. Bottenheim , Snowpack photchemical production of HONO: a major source of OH in the Arctic boundary layer in springtime. Geophys. Res. Lett. 2001 , 28,  4087.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   X. Zhou , K. Civerolo , H. Dai , G. Huang , J. Schwab , K. Demerjian , Summertime nitrous acid chemistry in the atmospheric boundary layer at a rural site in New York State. J. Geophys. Res. 2002 , 107,  4590.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   J. Stutz , B. Alicke , A. Neftel , Nitrous acid formation in the urban atmosphere: Gradient measurements of NO2 and HONO over grass in Milan. J. Geophys. Res. 2002 , 107,  8192.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   B. Alicke , A. Geyer , A. Hofzumahaus , F. Holland , S. Konrad , H.-W. Pätz , J. Schäfer , J. Stutz , et al. OH formation by HNO2 photolysis during the BERLIOZ experiment. J. Geophys. Res. 2003 , 108,  8247.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[24]   Trick S., Formation of Nitrous Acid on Urban Surfaces-A Physical-Chemical Perspective (Ph.D. thesis), 2004, 290 pp. (University of Heidelberg).

[25]   J. Kleffmann , T. Gavriloaiei , A. Hofzumahaus , F. Holland , R. Koppmann , L. Rupp , E. Schlosser , M. Siese , et al. Daytime formation of nitrous acid: a major source of OH radicals in a forest. Geophys. Res. Lett. 2005 , 32,  L05818.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   K. Acker , A. Febo , S. Trick , C. Perrino , P. Bruno , P. Wiesen , D. Möller , W. Wieprecht , et al. Nitrous acid in the urban area of Rome. Atmos. Environ. 2006 , 40,  3123.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   K. Acker , D. Möller , W. Wieprecht , F. X. Meixner , B. Bohn , S. Gilge , C. Plass-Dülmer , H. Berresheim , Strong daytime production of OH from HNO2 at a rural mountain site. Geophys. Res. Lett. 2006 , 33,  L02809.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   M. D. Andrés-Hernández , J. Notholt , J. Hjorth , O. Schrems , A DOAS study on the origin of nitrous acid at urban and non-urban sites. Atmos. Environ. 1996 , 30,  175.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   P. K. Simon , P. K. Dasgupta , Continuous automated measurement of gaseous nitrous and nitric acids and particulate nitrite and nitrate. Environ. Sci. Technol. 1995 , 29,  1534.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   C. Zellweger , M. Ammann , P. Hofer , U. Baltensperger , NOy speciation with a combined wet effluent diffusion denuder – aerosol collector coupled to ion chromatography. Atmos. Environ. 1999 , 33,  1131.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   M. Löflund , A. Kasper-Giebl , W. Tscherwenka , M. Schmid , H. Giebl , R. Hitzenberger , G. Reischl , H. Puxbaum , The performance of a gas and a aerosol monitoring system (GAMS) fort he determination of acidic water soluble organic and inorganic gases and ammonia as well as related particles from the atmosphere. Atmos. Environ. 2001 , 35,  2861.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   K. Acker , G. Spindler , E. Brüggemann , Nitrous and nitric acid measurements during the INTERCOMP2000 campaign in Melpitz. Atmos. Environ. 2004 , 38,  6497.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   K. Acker , D. Möller , R. Auel , W. Wieprecht , D. Kalaß , Concentrations of nitrous acid, nitric acid, nitrite and nitrate in the gas and aerosol phase at a site in the emission zone during ESCOMPTE 2001 experiment. Atmos. Res. 2005 , 74,  507.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   G. Huang , X. Zhou , G. Deng , H. Qiao , K. Civerolo , Measurements of atmospheric nitrous acid and nitric acid. Atmos. Environ. 2002 , 36,  2225.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   H. J. Beine , A. Amoroso , G. Esposito , R. Sparapani , A. Ianniello , T. Georgiadis , M. Nardino , P. Bonasoni , et al. Deposition of atmospheric nitrous acid on alkaline snow surfaces. Geophys. Res. Lett. 2005 , 32,  L10808.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   N. Takenaka , H. Terada , Y. Oro , M. Hiroi , H. Yoshikawa , K. Okitsu , H. Bandow , A new method for the measurement of trace amounts of HONO in the atmosphere using an air dragged aqua-membrane-type denuder and fluorescence detection. Analyst 2004 , 129,  1130.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[37]   Z. Genfa , S. Slanina , C. B. Boring , P. A. C. Jongejan , P. K. Dasgupta , Continuous wet denuder measurements of atmospheric nitric and nitrous acids during the 1999 Atlanta Supersite. Atmos. Environ. 2003 , 37,  1351.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   K. C. Clemitshaw , A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas phase tropospheric chemistry. Crit. Rev. Environ. Sci. Technol. 2004 , 34,  1.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   W. Liao , A. Hecobian , J. Mastromarino , D. Tan , Development of a photo-fragmentationIlaser-induuced fluoresscence measurememt of atmospheric nitrous acid. Atmos. Environ. 2006 , 40,  17.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[40]   A. M. Winer , H. W. Biermann , Long pathlength differential optical absorption spectroscopy (DOAS) measurements of gaseous HONO, NO2 and HCHO in the California south coast air basin. Res. Chem. Intermediat. 1994 , 20,  423.
         open url image1

[41]   A. Neftel , A. Blatter , R. Hesterberg , T. Staffelbach , Measurements of concentration gradients of HNO2 and HNO3 over a semi-natural ecosystem. Atmos. Environ. 1996 , 30,  3017.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[42]   X. Ren , H. Harder , M. Martinez , R. L. Lesher , A. Oliger , T. Shirley , J. Adams , J. B. Simpas , et al. OH and HO2 Chemistry in Urban Atmosphere of New York City. Atmos. Environ. 2003 , 37,  3639.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[43]   Seinfeld J. H., Pandis S. N., in Atmospheric Chemistry and Physics 1996, pp. 250–253 (Wiley & Sons: New York).

[44]   R. Kurtenbach , K. H. Becker , J. A. G. Gomes , J. Kleffmann , J. Lörzer , M. Spittler , P. Wiesen , R. Ackermann , et al. Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel. Atmos. Environ. 2001 , 35,  3385.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[45]   T. W. Kirchstetter , R. A. Harley , D. Littlejohn , Measurement of nitrous acid in motor vehicle exhaust. Environ. Sci. Technol. 1996 , 30,  2843.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[46]   S. Mertes , A. Wahner , Uptake of nitrogen dioxide and nitrous acid on aqueous surfaces. J. Phys. Chem. 1995 , 99,  14000.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[47]   M. Ammann , M. Kalberer , D. T. Jost , L. Tobler , E. Rössler , D. Piguet , H. W. Gäggeler , U. Baltensperger , Heterogeneous production of nitrous acid on soot in polluted air masses. Nature 1998 , 395,  157.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[48]   H. M. TenBrink , H. Spoelstra , The dark decay of HONO in environmental (SMOG) chambers. Atmos. Environ. 1998 , 32,  247.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[49]   J. Kleffmann , K. H. Becker , P. Wiesen , Heterogeneous NO2 conversion processes on acid surfaces: possible atmospheric implications. Atmos. Environ. 1998 , 32,  2721.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[50]   N. A. Saliba , M. Mochida , B. J. Finlayson Pitts , Laboratory studies of sources of HONO in polluted urban atmospheres. Geophys. Res. Lett. 2000 , 27,  3229.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[51]   X. Zhou , Y. He , G. Huang , T. D. Thornberry , M. A. Carroll , S. B. Bertman , Photochemical production of nitrous acid on glass sample manifold surface. Geophys. Res. Lett. 2002 , 29,
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[52]   B. J. Finlayson-Pitts , L. M. Wingen , A. L. Sumner , D. Syomin , K. A. Ramazan , The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism. Phys. Chem. Chem. Phys. 2003 , 5,  223.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[53]   F. Rohrer , B. Bohn , T. Brauers , D. Brüning , F.-J. Johnen , A. Wahner , J. Kleffmann , Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmos. Chem. Phys. 2005 , 5,  2189.
         open url image1

[54]   Veitel H., Vertical Profiles of NO2 and HONO in the Planetary Boundary Layer (Ph.D. thesis) 2002, 270 pp. (University of Heidelberg).

[55]   R. M. Harrison , N. Kitto , Evidence for a surface source of atmospheric nitrous acid. Atmos. Environ. 1994 , 28,  1089.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[56]   K. Acker , D. Möller , W. Wieprecht , R. Auel , D. Kalass , W. Tscherwenka , Nitrous and nitric acid measurements inside and outside of clouds at Mt. Brocken. Water, Air, Soil Pollut. 2001 , 130,  331.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[57]   J. Notholt , J. Hjorth , F. Raes , Formation of HNO2 on aerosol surfaces during foggy periods in the presence of NO and NO2 Atmos. Environ. 1992 , 26A,  211.
         open url image1

[58]   A. R. Reisinger , Observations of HNO2 in the polluted winter atmosphere: possible heterogeneous production on aerosols. Atmos. Environ. 2000 , 34,  3865.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[59]   K. A. Ramazan , D. Syomin , B. J. Finlayson-Pitts , The photochemical production of HONO during the heterogeneous hydrolysis of NO2. Phys. Chem. Chem. Phys. 2004 , 6,  3836.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[60]   H. Akimoto , H. Takagi , F. Sakamaki , Photo-enhancement of the nitrous acid formation in the surface reaction of nitrogen dioxide and water vapour: Extra radical source in smog chamber experiments. Int. J. Chem. Kinet. 1987 , 19,  539.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[61]   R. E. Honrath , Y. Lu , M. C. Peterson , J. E. Dibb , M. A. Arsenault , N. J. Cullen , K. Steffen , Vertical fluxes of NOx, HONO, and HNO3 above the snowpack at Summit, Greenland. Atmos. Environ. 2002 , 36,  2629.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[62]   X. Zhou , H. Gao , Y. He , G. Huang , S. Bertman , K. Civerolo J. Schwab, Nitric acid photolysis on surfaces in low-NOx environments: Significant atmospheric implications. Geophys. Res. Lett. 2003 , 30,  2217.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[63]   K. C. Clemitshaw , Coupling between the tropospheric photochemistry of nitrous acid (HONO) and nitric acid (HNO3). Environ. Chem. 2006 , 3,  31.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[64]   H. J. Beine , A. Amoroso , F. Domine , M. D. King , M. Nardino , A. Ianniello , J. L. France , Surprisingly small HONO emissions from snow surfaces at Browning Pass, Antarctica. Atmos. Chem. Phys. 2006 , 6,  2569.
         open url image1

[65]   C. George , R. S. Strekowski , J. Kleffmann , K. Stemmler , M. Ammann , Photoenhanced uptake of gaseous NO2 on solid organic compounds: a photochemical source of HNO2? Faraday Discuss. 2005 , 130,  195.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[66]   K. Stemmler , M. Ammann , C. Donders , J. Kleffmann , C. George , Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature 2006 , 440,  195.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[67]   I. Bejan , Y. Abd El Aal , I. Barnes , T. Benter , B. Bohn , P. Wiesen , J. Kleffmann , The photolysis of ortho-nitrophenols: a new gas phase source of HONO. Phys. Chem. Chem. Phys. 2006 , 8,  2028.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[68]   K. Acker , S. Mertes , D. Möller , W. Wieprecht , R. Auel , D. Kalass , Case study of cloud physical and chemical processes in low clouds at Mt. Brocken. Atmos. Res. 2002 , 64,  41.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[69]   F. Beyrich , K. Acker , D. Kalaß , O. Klemm , D. Möller , E. Schaller , J. Werhahn , U. Weissensee , Boundary layer structure and photochemical pollution in the Harz Mountains – an observational study. Atmos. Environ. 1996 , 30,  1271.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[70]   G. Spindler , K. Müller , E. Brüggemann , T. Gnauk , H. Herrmann , Long-term size-segregated characterization of PM10, PM2.5, and PM1 at the IfT research station Melpitz downwind of Leipzig (Germany) using high and low-volume filter samplers. Atmos. Environ. 2004 , 38,  5333.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[71]   K. Müller , G. Spindler , W. Maenhaut , R. Hitzenberger , W. Wieprecht , U. Baltensperger , H. ten Brink, INTERCOMP2000, a campaign to assess the comparability of methods in use in Europe for measuring aerosol composition. Atmos. Environ. 2004 , 38,  6459.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[72]   C. Perrino , A. Pietrodangelo , A. Febo , An atmospheric stability index based on radon progeny measurements for the evaluation of primary urban pollution. Atmos. Environ. 2001 , 35,  5235.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[73]   B. Cros , P. Durand , H. Cachier , Ph. Drobinski , E. Frejafon , C. Kottmeïer , P. E. Perros , V.-H. Peuch , et al. The ESCOMPTE program: an overview. Atmos. Res. 2004 , 69,  241.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[74]   F. Cousin , P. Tulet , R. Rosset , Interaction between local and regional polluted layers in the low troposphere: impact on surface concentrations during ESCOMPTE 2001, IOP2. Atmos. Res. 2005 , 74,  117.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[75]   K. Acker , W. Wieprecht , D. Möller , Chemical and physical characterisation of low clouds: results from the ground based cloud experiment FEBUKO. Arch. Ind. Hyg. Toxicol. 2003 , 54,  231.
         open url image1

[76]   H. Herrmann , R. Wolke , K. Müller , FEBUKO and MODMEP: Field measurements and modelling of aerosol and cloud multiphase processes. Atmos. Environ. 2005 , 39,  4169.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[77]   K. Müller , D. van Pinxteren , A. Plewka , B. Svrcina , H. Kramberger , D. Hofmann , K. Bächmann , H. Herrmann , Aerosol characterisation at the FEBUKOupwind station Goldlauter (II): detailed organic chemical characterisation. Atmos. Environ. 2005 , 39,  4219.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[78]   G. H. Handisides , C. Plass-Dülmer , S. Gilge , H. Bingemer , H. Berresheim , Hohenpeissenberg photochemical experiment (HOPE 2000): Measurements and photostationary state calculations of OH and peroxy radicals. Atmos. Chem. Phys 2003 , 3,  1565.
         open url image1

[79]   K. Mannschreck , S. Gilge , C. Plass-Dülmer , W. Fricke , H. Berresheim , Assessment of the applicability of NO-NO2–O3 photostationary state to long-term measurements at the Hohenpeissenberg GAW station, Germany. Atmos. Chem. Phys. 2004 , 4,  1265.
         open url image1

[80]   A. Kraus , A. Hofzumahaus , Field measurements of atmospheric photolysis frequencies for O3, NO2, HCHO, CH3CHO, H2O2, and HONO by UV spectroradiometry. J. Atmos. Chem. 1998 , 31,  161.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[81]   H. Berresheim , T. Este , C. Plass-Dülmer , F. L. Eisele , D. Tanner , Chemical ionisation mass spectrometer for long-term measurements of atmospheric OH and H2SO4. Int. J. Mass Spectrom. 2000 , 202,  91.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[82]   J. Stutz , B. Alicke , R. Ackermann , A. Geyer , S. Wang , A. B. White , E. J. Williams , C. W. Spicer , et al. Relative humidity dependence of HONO chemistry in urban areas. J. Geophys. Res. 2004 , 109,  D03307.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[83]   J. Lüttke , K. Levsen , K. Acker , W. Wieprecht , D. Möller , Phenols and nitrated phenols in clouds at Mt. Brocken. Int. J. Environ. Anal. Chem. 1999 , 74,  69.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[84]   K. Acker , D. Beysens , D. Möller , Nitrite in dew, fog, cloud and rain water – An indicator for heterogeneous processes on surfaces. Atmos. Res. 2007 ,
         open url image1

[85]   Wiesen P. (scientific coordinator), Nitrous Acid and its Influence on the Oxidation Capacity of the Atmosphere (NITROCAT) 2003, Final EU Project Report EVK2-CT-1999-00025.

[86]   F. L. Eisele , G. H. Mount , D. Tanner , A. Jefferson , R. Shetter , J. W. Harder , E. J. Williams , Understanding the production and interconversion of the hydroxyl radical during the tropospheric OH photochemistry experiment. J. Geophys. Res. 1997 , 102,  6457.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[87]   F. Holland , U. Aschmutat , M. Hessling , A. Hofzumahaus , D. H. Ehhalt , Highly time resolved measurements of OH during POPCORN using laser-induced fluorescence spectroscopy. J. Atmos. Chem. 1998 , 31,  205.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[88]   F. Holland , A. Hofzumahaus , J. Schäfer , Measurements of OH and HO2 Radical concentrations during BERLIOZ by Laser Induced Fluorescence Spectroscopy. J. Geophys. Res. 2003 , 108,  8246.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[89]   J. Kleffmann , J. Heland , R. Kurtenbach , J. C. Lörzer , P. Wiesen , A new instrument for the Detection of Nitrous Acid (HONO). Environ. Sci. Pollut. R. 2002 , 9,  48.
         open url image1

[90]   R. Atkinson , D. L. Baulch , R. A. Cox , J. N. Crowley , R. F. Hampson , R. G. Hynes , M. E. Jenkin , M. J. Rossi , et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – Gas phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys. 2004 , 4,  1461.
         open url image1

[91]   R. G. Prinn , R. F. Weiss , B. R. Miller , J. Huang , F. N. Alyea , D. M. Cunnold , P. J. Fraser , D. E. Hartley , Atmospheric trends and lifetime of CH3CCl3 and global OH concentrations. Science 1995 , 269,  187.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[92]   F. Rohrer , H. Berresheim , Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation. Nature 2006 , 442,  184.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[93]   M. A. J. Harrison , S. Barra , D. Borghesi , D. Vione , C. Arsene , K. I. Olariu , Nitrated phenols in the atmosphere: a review. Atmos. Environ. 2005 , 39,  231.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[94]   B. C. Faust , C. Anastasio , J. M. Allen , T. Arakaki , Aqueous phase photochemical formation of peroxides in authentic cloud and fog waters. Science 1993 , 260,  73.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[95]   S. E. Paulson , J. J. Orlando , The reactions of ozone with alkenes: an important source of HOx in the boundary layer. Geophys. Res. Lett. 1996 , 23,  3727.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[96]   R. Schimang , A. Folkers , J. Kleffmann , E. Kleist , M. Miebach , J. Wildt , Uptake of gaseous nitrous acid (HONO) by several plant species. Atmos. Environ. 2006 , 40,  1324.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1