Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Sources, nature and influence on climate of marine airborne particles

E. Keith Bigg
+ Author Affiliations
- Author Affiliations

12 Wills Ave, Castle Hill, NSW 2154, Australia. Email: keith@hotkey.net.au

Environmental Chemistry 4(3) 155-161 https://doi.org/10.1071/EN07001
Submitted: 10 January 2007  Accepted: 3 May 2007   Published: 22 June 2007

Environmental context. Climate models are of considerable interest to scientists and the general public given the increasing awareness of global climate change. A large uncertainty in climate models is the influence of airborne particles on the amount of sunlight that clouds reflect back to space. Since oceans comprise 70% of the Earth’s surface, it is important that we gain an understanding of the factors that control the sources and nature of marine airborne particles. This work describes previously unexplored features of the marine aerosol at a clean site exposed to the Southern Ocean and its environmental importance, which will be of benefit to future climate models.

Abstract. Airborne particles (aerosol) collected at Cape Grim, Tasmania, in February 2006 in baseline conditions were examined by transmission electron microscopy. Particles recognised as marine exopolymer gels, and aggregates of insoluble organic particles that have diameters of ~40 nm, formed 9% of the particles larger than 200 nm. Once water-soluble compounds were removed by dialysis, the proportion rose to 30%. The gels and exopolymers were mainly of marine algal and bacterial origin. Their highly surface-active properties make them potentially environmentally important in the aerosol because of their ability to act as cloud condensation nuclei. The chemical constitution of particles in the 80–200-nm diameter size range is controversial, and widely varying estimates of the proportion of sea salt they contain have been published. Possible reasons for this are discussed. The present work supports the lowest estimate.

Additional keywords: aerosol (bio-), cloud condensation nuclei (CCN), exopolymers, sea salt.


Acknowledgements

The author thanks the Director of the Cape Grim Baseline Station, Dr Jill Cainey, for the opportunity to take these measurements and for financial support with the electron microscopy. Sydney University’s Electron Microscope Unit and Dr Ian Kaplin are also thanked for the electron microscopy.


References


[1]   F. Cavalli , M. C. Facchini , S. Decesari , M. Mircea , L. Emblico , S. Fuzzi , D. Ceburnis , Y. J. Yoon , et al. Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. J. Geophys. Res. 2004 , 109,  D24215.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   N. Meskhidze , A. Nenes , Phytoplankton and cloudiness in the Southern Ocean. Science 2006 , 314,  1419.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[3]   C. Leck , E. K. Bigg , Evolution of the marine aerosol – A new perspective. Geophys. Res. Lett. 2005 , 32,  L19803.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   W.-C. Chin , M. V. Orellana , P. Verdugo , Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 1998 , 391,  568.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   M. V. Orellana , P. Verdugo , Ultraviolet light blocks the organic carbon exchange between the dissolved phase and the gel phase in the ocean. Limnol. Oceanogr. 2003 , 48,  1618.
         open url image1

[6]   P. Verdugo , A. L. Alldredge , F. Azam , D. I. Kirchman , U. Passow , P. H. Santschi , The oceanic gel phase: a bridge in the DOM-POM continuum. Mar. Chem. 2004 , 92,  67.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   E. K. Bigg , C. Leck , L. Tranvik , Occurrence of small colloids in sea water. Mar. Chem. 2004 , 91,  131.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   C. Leck , E. K. Bigg , Biogenic particles in the surface microlayer and overlying atmosphere in the central Arctic Ocean during summer. Tellus 2005 , 57B,  305.
         open url image1

[9]   M. L. Wells , E. D. Goldberg , Occurrence of small colloids in sea water. Nature 1991 , 353,  342.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   E. K. Bigg , Comparison of the aerosol at four baseline atmospheric monitoring stations. J. Appl. Meteorol. 1980 , 19,  521.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   F. P. Parungo , C. T. Nagamoto , J. M. Harris , Temporal and spatial variations of marine aerosols over the Atlantic Ocean. Atmos. Res. 1986 , 20,  23.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   D. M. Murphy , J. R. Anderson , P. K. Quinn , L. M. McInnes , F. J. Brechtel , S. M. Kreidenweis , A. M. Middlebrook , M. Posfai , et al. Influences of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature 1998 , 392,  62.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   E. M. Mårtensson , E. D. Nilsson , G. de Leeuw , L. H. Cohen , H.-C. Hansson , Laboratory simulations of the primary marine aerosol production. J. Geophys. Res. 2003 , 108,  4297.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   K. Sellegri , C. D. O'Dowd , Y. J. Yoon , S. G. Jennings , G. de Leeuw , Surfactants and sub-micron sea-spray generation. J. Geophys. Res. 2006 , 111,  D22215.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   M. O. Andreae , W. Elbert , Y. Cai , T. W. Andreae , Non-sea-salt sulfate, methanesulfonate, and nitrate concentrations and size distributions at Cape Grim, Tasmania. J. Geophys. Res. 1999 , 104 (D17),  21695.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   C. Leck , E. K. Bigg , Comparison of sources and nature of the tropical aerosol with the summer high Arctic aerosol. Tellus B 2007 , in press.
         open url image1

[17]   A. W. Decho , Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. 1990 , 28,  73.
         open url image1

[18]   H. Sievering , J. Cainey , M. Harvey , J. McGregor , S. Nichol , P. Quinn , Aerosol non-sea-salt sulfate in the remote boundary layer under clear-sky and normal cloudiness conditions: Ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation. J. Geophys. Res. 2004 , 109,  D19317.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   M. Pόsfai , J. Li , J. R. Anderson , P. R. Buseck , Aerosol bacteria over the Southern Ocean during ACE-1. Atmos. Res. 2003 , 66,  231.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   A. D. Clarke , Submicrometer sea salt in the remote marine environment. J. Aerosol Sci. 1999 , 30,  S3.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   J. A. Fuhrman , Marine viruses and their biogeochemical and ecological effects. Nature 1999 , 399,  541.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[22]   M. Pósfai , J. R. Anderson , P. R. Busek , H. Sievering , Soot and aerosol particles in the remote marine troposphere. J. Geophys. Res. 1999 , 104,  21685.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   J. Y. Aller , M. R. Kuznetsova , C. J. Jahns , P. F. Kemp , The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol Sci. 2005 , 36,  801.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[24]   M. L. Wells , Marine colloids. A neglected dimension. Nature 1998 , 391,  530.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1