Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Flow Analysis Techniques for Spatial and Temporal Measurement of Nutrients in Aquatic Systems

Sarah Gray A , Grady Hanrahan B C , Ian McKelvie A E , Alan Tappin D , Florence Tse B and Paul Worsfold D
+ Author Affiliations
- Author Affiliations

A Water Studies Centre, School of Chemistry, Monash University, VIC 3800, Australia.

B Department of Chemistry and Biochemistry, California State University, Los Angeles, CA 90032, USA.

C Center for Environmental Analysis, California State University, Los Angeles, CA 90032, USA.

D School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.

E Corresponding author. Email: ian.mckelvie@sci.monash.edu.au




Sarah Gray undertook her PhD in the Water Studies Centre, School of Chemistry at Monash University. Her PhD research related to the development of flow injection analysis techniques for the determination of dissolved nitrogen and carbon species in aquatic ecosystems. She is currently Project Manager for the Delivery and Sensing program at Nanotechnology Victoria Ltd.



Grady Hanrahan is a faculty member in the Department of Chemistry & Biochemistry at California State University, Los Angeles. His research interests focus on the design and development of miniature analytical systems and microchip technology for environmental and bioanalytical applications. Various chemometric experimental design and optimization techniques are being used to aid in the overall development process.



Ian McKelvie is Associate Professor in the School of Chemistry at Monash University. His research focuses on the development of flow injection techniques and methods for nutrients, and the application of these to the study of phosphorus biogeochemistry in freshwater and marine systems.



Alan Tappin is a Senior Post-Doctoral Fellow in Environmental Chemistry at the University of Plymouth, UK. His research interests with respect to nutrients focus on the investigation and quantification of the land to sea fluxes of nitrogen and phosphorus, and how these fluxes are modified during transit through the estuarine coastal zone. Linking data to models is an important part of this process.



Florence Tse received her Bachelor of Science in Biochemistry from the University of California, Los Angeles and is currently pursuing her Masters degree with an emphasis in Analytical Chemistry at California State University, Los Angeles. Her interests lie in the development of flow injection – capillary electrophoresis (FI-CE) for environmental applications.



Paul Worsfold is Professor of Analytical Chemistry in the School of Earth, Ocean and Environmental Sciences at the University of Plymouth in the UK. He is also a member of the Editorial Board of Environmental Chemistry. His research is at the interface of Analytical Chemistry with Environmental Chemistry. Particular areas of current interest are the development of field based and laboratory techniques for the determination of macronutrients (e.g. P, N species) and micronutrients (e.g. Fe species) in natural waters and their role in terrestrial, freshwater and marine biogeochemical processes. The technique of flow injection (FI) analysis provides an integrating theme for many of these research activities, with particular emphasis on the design, construction and deployment of automated in situ FI instrumentation.

Environmental Chemistry 3(1) 3-18 https://doi.org/10.1071/EN05059
Submitted: 19 July 2005  Accepted: 22 September 2005   Published: 2 March 2006

Environmental Context. Eutrophication is a growing problem globally, and it has significant ecological and socio-economic consequences. Understanding the causes of eutrophication requires a knowledge of nutrient biogeochemistry in aquatic systems. Owing to the high spatial and temporal variability of nutrients in these systems, there is a need for autonomous in situ measurement techniques with rapid response and the ability to collect long-term data. Flow injection analysis is one technique that meets these demands.

Abstract. Flow analysis offers a versatile and powerful approach to monitoring of the aquatic environment. The present review highlights the drivers for determining macro- and micro-nutrients in marine and fresh waters, and outlines the instrumental requirements for in situ instrumentation. The principles of flow analysis, specifically flow injection and derivative techniques, and the chemical bases for macro- and micro-nutrient detection are discussed, and key examples of suitable approaches are considered. The successful deployment of flow analysis nutrient monitoring systems for spatial and temporal measurements is illustrated by specific examples relating to surface transects, depth profiles and temporal deployments. Finally, the challenges and imperatives of research in this area are outlined.

Keywords. : flow injection analysis—freshwater chemistry—marine chemistry


Acknowledgements

IMcK and PJW would like to thank EU Marie Curie Outgoing International Fellowships Grant 8073 (P-DIAGENEX) for partial support of this work.


References


[1]   R. Costanza, R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limberg, S. Naeem, R. V. O’Neill, J. Paruelo, R. G. Raskin, P. Sutton, M. van den Belt, Nature 1997, 387,  253.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1