3D seismic attributes for structural mapping and enhancement of deep gold mining: a case study from the West Wits Line goldfields, South Africa
Nomqhele Z. Nkosi 1 Musa S. D. Manzi 1 3 Oleg Brovko 2 Raymond J. Durrheim 11 University of the Witwatersrand, School of Geosciences, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa.
2 De Beers Group Services RSA Pty Ltd, Technical Services Johannesburg, Johannesburg 2193, South Africa.
3 Corresponding author. Email: musa.manzi@wits.ac.za
Exploration Geophysics 49(3) 345-362 https://doi.org/10.1071/EG16058
Submitted: 26 May 2016 Accepted: 2 April 2017 Published: 24 May 2017
Abstract
Volumetric and horizon-based seismic attributes were carried out on the 3D reflection seismic data acquired on the deep crystalline rock environments of the Witwatersrand Basin (South Africa). This study aimed at improving the delineation of minor faults that cross-cut the gold-bearing quartz pebble conglomerate horizons (termed reefs) in the complex geology of the West Wits Line (WWL) goldfield using different seismic attributes. The 3D seismic data show delineation of faults that cross-cut and displace the target horizons by tens to hundreds of metres, leading to the delineation of the ore resources in faulted areas of the mines. In particular, the ant-tracking technique has provided better stratigraphic and structural imaging in complex faulted areas, relative to conventional interpretation methods. Other improvements include more accurate mapping of the depths, dip and strike of the key seismic horizon (Roodepoort shale) using the edge detection attributes, yielding a better understanding of the interrelationship between fault activity, reef distribution and the relative chronology of tectonic events. The integration of the 3D reflection seismic data, seismic attributes and information from borehole logs and underground mapping has provided better imaging and modelling of important fault systems that might have a direct effect on mining. This information could be used for future mining planning and designs to: (1) assess and mitigate the risks posed by mining activities, and (2) improve the resource evaluation of the gold-bearing reefs in the WWL goldfield.
Key words: azimuth, dip, faults, imaging, interpretation, mineral exploration, mining, mining geophysics, seismic reflection.
References
Armstrong, R., Compston, W., Retief, E., Williams, I., and Welke, H., 1991, Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad: Precambrian Research, 53, 243–266| Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtVKmtLk%3D&md5=b44a27a3bcd93214800ac3933387ed2bCAS |
Bacon, M., Simm, R., and Redshaw, T., 2003, 3-D seismic interpretation: Cambridge University Press.
Barnicoat, A. C., Henderson, I. H. C., Knipe, R. J., Yardley, B. W. D., Napier, R. W., Fox, N. P. C., Kenyon, A. K., Muntingh, D. J., Strydom, D, Winkler, K. S., Lawrence, S. R., and Cornford, C, 1997, Hydrothermal gold mineralization in the Witwatersrand Basin: Nature, 386, 820–824
| Hydrothermal gold mineralization in the Witwatersrand Basin:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVGjs7k%3D&md5=b823b4530f3149693007fd0237d044ccCAS |
Basir, H. M., Javaherian, A., and Yaraki, M. T., 2013, Multi-attribute ant-tracking and neural network for fault detection: a case study of an Iranian oilfield: Journal of Geophysics and Engineering, 10, 015009
| Multi-attribute ant-tracking and neural network for fault detection: a case study of an Iranian oilfield:Crossref | GoogleScholarGoogle Scholar |
Beach, A., and Smith, R., 2007, Structural geometry and development of the Witwatersrand Basin, South Africa, in A. C. Ries, R. W. H. Butler, and R. Graham, eds., Deformation of the continental crust: the legacy of Mike Coward: Geological Society, Special Publication, 272, 533–542.
Bowen, T. B., Marsh, J. S., Bowen, M. P., and Eales, H. V., 1986, Volcanic rocks of the Witwatersrand Triad, South Africa. I: Description, classification, and geochemical stratigraphy: Precambrian Research, 31, 297–324
| 1:CAS:528:DyaL28XkvVamtbk%3D&md5=ed6f3906a29ac6e882a66817e03efb96CAS |
Brown, A. R., 1996, Seismic attributes and their classification: The Leading Edge, 15, 1090
| Seismic attributes and their classification:Crossref | GoogleScholarGoogle Scholar |
Cook, A. P., 1998, The occurrence, emission, and ignition of combustible strata gases in Witwatersrand gold mines and Bushveld platinum mines, and means of ameliorating related ignition and explosion hazards: Final project report, project GAP 504, Safety in Mines Research Advisory Committee, 89.
Coward, M. P., Spencer, R. M., and Spencer, C. E., 1995, Development of the Witwatersrand Basin, South Africa: Geological Society of London, Special Publications, 95, 243–269
| Development of the Witwatersrand Basin, South Africa:Crossref | GoogleScholarGoogle Scholar |
Dalley, R. M., Gevers, E. C. A., Stampfli, G. M., Davies, D. J., Gastaldi, C. N., Ruijtenberg, P. A., and Vermeer, G. J. O., 1989, Dip and azimuth displays for 3D seismic interpretation: First Break, 7, 86–95
Dankert, B. T., and Hein, K. A., 2010, Evaluating the structural character and tectonic history of the Witwatersrand Basin: Precambrian Research, 177, 1–22
| Evaluating the structural character and tectonic history of the Witwatersrand Basin:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1Kjtg%3D%3D&md5=dd07f5f883396a576cf9a4a0072aa78cCAS |
De Kock, W. P., 1964, The geology and economic significance of the West Wits Line, in S. H. Haughton, ed., The geology of some ore deposits in southern Africa: Geological Society of South Africa, 1, 323–386.
Duff, D., Hurich, C., and Deemer, S., 2012, Seismic properties of the Voisey’s Bay massive sulphide deposit: Insights into approaches to seismic imaging: Geophysics, 77, WC59–WC68
| Seismic properties of the Voisey’s Bay massive sulphide deposit: Insights into approaches to seismic imaging:Crossref | GoogleScholarGoogle Scholar |
Durrheim, R. J., 1986, Recent reflection seismic developments in the Witwatersrand basin, in M. Barazangi, and L. Brown, eds., Reflection seismology, a global perspective: geodynamics series: American Geophysical Union, 13, 77–83.
Durrheim, R. J., Spottiswoode, S. M., Roberts, M. K. C., and Brink, A. van Z., 2005, Comparative seismology of the Witwatersrand Basin and Bushveld Complex and emerging technologies to manage the risk of rock bursting: Journal of the South African Institute of Mining and Metallurgy, 105, 409–416
Dvorkin, J., and Uden, R., 2004, Interpreter’s corner – seismic wave attenuation in a methane hydrate reservoir: The Leading Edge, 23, 730–732
| Interpreter’s corner – seismic wave attenuation in a methane hydrate reservoir:Crossref | GoogleScholarGoogle Scholar |
Engelbrecht, C. J., Baumbach, G. W., Matthysen, J., and Fletcher, P., 1986, The West Wits Line, in C. A. Anhaeusser, and S. Maske, eds., Mineral deposits of southern Africa: Geological Society of South Africa, 1, 599–648.
Frimmel, H. E., and Gartz, V. H., 1997, Witwatersrand gold particle chemistry matches model of metamorphosed, hydrothermally altered placer deposits: Mineralium Deposita, 32, 523–530
| Witwatersrand gold particle chemistry matches model of metamorphosed, hydrothermally altered placer deposits:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmslSgtb4%3D&md5=2adb1c3eb3ae959b5812a59d7ece0e1dCAS |
Frimmel, H. E., and Minter, W. E. L., 2002, Recent developments concerning the geological history and genesis of the Witwatersrand gold deposits, South Africa: Society of Economic Geologists, Special Publication, 9, 17–45.
Frimmel, H. E., Groves, D. I., Kirk, J., Ruiz, J., Chesley, J., and Minter, W. E. L., 2005, The formation and preservation of the Witwatersrand goldfields, the world’s largest gold province, in J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, and J. P. Richards, eds., Economic Geology 100th Anniversary Volume: Society of Economic Geologists, 769–797.
Gibson, M. A. S., 2004, Goldfields KEA 3D Seismic Project: Final Report. Unpublished report to Gold Fields Mining, 52 pp.
Gibson, R. L., Armstrong, R. A., and Reimold, W. U., 1997, The age and thermal evolution of the Vredefort impact structure: A single-grain U-Pb zircon study: Geochimica et Cosmochimica Acta, 61, 1531–1540
| The age and thermal evolution of the Vredefort impact structure: A single-grain U-Pb zircon study:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVShurg%3D&md5=325da11b5eaf6cd8cfbe3e34994e6afbCAS |
Gibson, M. A. S., Jolley, S. J., and Barnicoat, A. C., 2000, Interpretation of the Western Ultra Deep Levels 3D seismic survey: The Leading Edge, 19, 730–735
| Interpretation of the Western Ultra Deep Levels 3D seismic survey:Crossref | GoogleScholarGoogle Scholar |
Guy, B. M., Beukes, N. J., and Gutzmer, J, 2010, Paleoenvironmental controls on the texture and chemical composition of pyrite from non-conglomeritic sedimenatary rocks of the mesoarchaean Witwatersrand Supergroup, South Africa: South African Journal of Geology, 113, 195–228
| 1:CAS:528:DC%2BC3cXht1SmsrbK&md5=1e4a556d8b33b178c5f2d53cac04ef2aCAS |
Heesakkers, V., Murphy, S., and Reches, Z., 2011, Earthquake rupture at focal depth, part 1: structure and rupture of the Pretorius Fault, Tau-Tona mine, South Africa: Pure and Applied Geophysics, 168, 2395–2425
| Earthquake rupture at focal depth, part 1: structure and rupture of the Pretorius Fault, Tau-Tona mine, South Africa:Crossref | GoogleScholarGoogle Scholar |
Jolley, S. J., Freeman, S. R., Barnicoat, A. C., Phillips, G. M., Knipe, R. J., Pather, A., Fox, N. P. C., Strydom, D, Birch, M. T. G., Henderson, I. H. C., and Rowland, T. W., 2004, Structural controls on Witwatersrand gold mineralization: Journal of Structural Geology, 26, 1067–1086
| Structural controls on Witwatersrand gold mineralization:Crossref | GoogleScholarGoogle Scholar |
Kositcin, N., and Krapež, B., 2004, SHRIMP U-Pb detrital zircon geochronology of the late Archaean Witwatersrand Basin, relation between zircon provenance age spectra and basin evolution: Precambrian Research, 129, 141–168
| SHRIMP U-Pb detrital zircon geochronology of the late Archaean Witwatersrand Basin, relation between zircon provenance age spectra and basin evolution:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslarsQ%3D%3D&md5=80a4bca43aadd8f7900faa28b502f0fcCAS |
Krapež, B., 1985, The Ventersdorp Contact placer: a gold-pyrite placer of stream and debris- flow origins from the Archaean Witwatersrand Basin of South Africa: Sedimentology, 32, 223–234
| The Ventersdorp Contact placer: a gold-pyrite placer of stream and debris- flow origins from the Archaean Witwatersrand Basin of South Africa:Crossref | GoogleScholarGoogle Scholar |
Linzer, L. M., Bejaichund, M., Cichiwicz, A., Durrheim, R. J., Goldbach, O. D., Kataka, M. O., Kijko, A., Milev, A. M., Saunders, I., Spottiswoode, S. M., and Webb, S. J., 2007, Recent research in seismology in South Africa: South African Journal of Science, 103, 419–426
Litthauer, A., 2009, Geochemistry of the dykes in the Carletonville Goldfield: M.Sc. thesis, University of the Free State, South Africa.
Malehmir, A., Durrheim, R., Bellefleur, G., Urosevic, M., White, J., Milkereit, B., and Campbell, G., 2012, Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future: Geophysics, 77, WC173–WC190
| Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future:Crossref | GoogleScholarGoogle Scholar |
Malehmir, A., Koivisto, E., Manzi, M., Cheraghi, S., Durrheim, R., and Bellefleur, R., 2014, A review of reflection seismic investigations in three major metallogenic regions: The Kevitsa Ni-Cu-PGE district (Finland), Witwatersrand goldfields (South Africa), and the Bathurst Mining Camp (Canada): Ore Geology Reviews, 56, 423–441
| A review of reflection seismic investigations in three major metallogenic regions: The Kevitsa Ni-Cu-PGE district (Finland), Witwatersrand goldfields (South Africa), and the Bathurst Mining Camp (Canada):Crossref | GoogleScholarGoogle Scholar |
Malinowski, M., Schetselaar, E., and White, D. J., 2012, 3D seismic imaging of volcanogenic massive sulphide deposits in the Flin Flon mining camp, Canada: part 2 – forward modelling: Geophysics, 77, WC81–WC93
| 3D seismic imaging of volcanogenic massive sulphide deposits in the Flin Flon mining camp, Canada: part 2 – forward modelling:Crossref | GoogleScholarGoogle Scholar |
Mambane, P. W., Hein, K. A. A., Twemlow, S. G., and Manzi, M. S. D., 2011, Pseudotachylite in the south boundary fault at the Cooke Shaft, Witwatersrand Basin, South Africa: South African Journal of Geology, 114, 109–120
| Pseudotachylite in the south boundary fault at the Cooke Shaft, Witwatersrand Basin, South Africa:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1Whsbw%3D&md5=0c3c6d7c19df756bc5662e20143670ecCAS |
Manzi, M. S. D., Gibson, M. A. S., Hein, K. A. A., King, N., and Durrheim, R. J., 2012a, Application of 3D seismic techniques to evaluate ore resources in the West Wits Line Goldfield and portions of the West Rand Goldfield, South Africa: Geophysics, 77, WC163–WC171
| Application of 3D seismic techniques to evaluate ore resources in the West Wits Line Goldfield and portions of the West Rand Goldfield, South Africa:Crossref | GoogleScholarGoogle Scholar |
Manzi, S. D., Durrheim, R. J., Hein, A. A., and King, N., 2012b, 3D edge detection seismic attributes used to map potential conduits for water and methane in deep gold mines in the Witwatersrand Basin, South Africa: Geophysics, 77, WC133–WC147
| 3D edge detection seismic attributes used to map potential conduits for water and methane in deep gold mines in the Witwatersrand Basin, South Africa:Crossref | GoogleScholarGoogle Scholar |
Manzi, M. S. D., Hein, K. A. A., King, N., and Durrheim, R. J., 2013, Neoarchaean tectonic history of the Witwatersrand basin and Ventersdorp Supergroup: new constraints from high resolution 3D seismic reflection data: Tectonophysics, 590, 94–105
| Neoarchaean tectonic history of the Witwatersrand basin and Ventersdorp Supergroup: new constraints from high resolution 3D seismic reflection data:Crossref | GoogleScholarGoogle Scholar |
McCarthy, T. S., 2006, The Witwatersrand Supergroup, in M. R. Johnson, C. R. Anhaeusser, and R. J Thomas, eds., The geology of South Africa: Geological Society of South Africa, 155–186.
Moon, C. J., and Whateley, M. K., 1989, Witwatersrand conglomerate gold: West Rand, in A. M. Evans, ed., Introduction to mineral exploration: Blackwell Science, 91, 258–291.
Myers, R. E., McCarthy, T. S., Bunyard, M., Cawthorn, R. G., Falatsa, T. M., Hewitt, T., Linton, P., Myers, J. M., Palmer, K. J., and Spencer, R., 1990a, Geochemical stratigraphy of the Klipriviersberg Group volcanic rocks: South African Journal of Geology, 93, 224–238
Myers, R. E., McCarthy, T. S., and Stanistreet, I. G., 1990b, A tectono-sedimentary reconstruction of the development and evolution of the Witwatersrand Basin, with particular emphasis on the Central Rand Group: South African Journal of Geology, 93, 180–201
Neves, F. A., Zahrani, M. S., and Bremkamp, S., 2004, Detection of potential fractures and small faults using seismic attributes: The Leading Edge, 23, 903–906
| Detection of potential fractures and small faults using seismic attributes:Crossref | GoogleScholarGoogle Scholar |
Ngeri, A. P., Tamunobereton-ari, I, and Amakiri, A. R. C., 2015, Ant-tracker attributes: an effective approach to enhancing fault identification and interpretation: Journal of VLSI and Signal Processing, 5, 67–73
Nkosi, N. Z., Manzi, M. S. D., Drennan, G. R., and Yilmza, H, 2017, Experimental measurements of seismic velocities on core samples and their dependence on mineralogy and stress; Witwatersrand Basin (South Africa): Studia Geophysica et Geodaetica, 61, 115–144
| Experimental measurements of seismic velocities on core samples and their dependence on mineralogy and stress; Witwatersrand Basin (South Africa):Crossref | GoogleScholarGoogle Scholar |
Pedersen, S. I., Randen, T., Sonneland, L., and Steen, O., 2002, Automatic 3D fault interpretation by artificial ants: 64th Meeting, EAGE Expanded Abstracts, G037.
Phillips, G. N., and Myers, R. E., 1989, The Witwatersrand goldfields: part II. An origin for Witwatersrand gold during metamorphism and associated alteration: Economic Geology Monographs, 6, 598–608
Pretorius, D. A., 1981, Gold and uranium in quartz–pebble conglomerates, in J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, and J. P. Richards, eds., Economic Geology 100th Anniversary Volume: Society of Economic Geologists, 117–138.
Pretorius, C. C., Steenkamp, W. H., and Smith, R. G., 1994, Developments in data acquisition, processing, and interpretation over ten years of south vibroseismic surveying in South Africa, in Proceedings of the XVth CMMI Congress: South African Institute of Mining and Metallurgy, 3, 249–258.
Pretorius, C. C., Muller, M. R., Larroque, M., and Wilkins, C., 2003, A review of 16 years of hardrock seismic of the Kaapvaal Craton, in D. W. Eaton, B. Milkereit, and M. H. Salisbury, eds., Hardrock seismic exploration: geophysical developments, 10: Society of Exploration Geophysicists, 247–268.
Priest, J. A., Best, I. A., and Clayton, C. R. I., 2006, Attenuation of seismic waves in methane gas hydrate-bearing sand: Geophysical Journal International, 164, 149–159
| Attenuation of seismic waves in methane gas hydrate-bearing sand:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFSmurw%3D&md5=2990dbb9e1f56f8165c969f5e15c2779CAS |
Riemer, K. L., and Durrheim, R. J., 2012, Mining seismicity in the Witwatersrand Basin: monitoring, mechanisms and mitigation strategies in perspective: Journal of Rock Mechanics and Geotechnical Engineering, 4, 228–249
| Mining seismicity in the Witwatersrand Basin: monitoring, mechanisms and mitigation strategies in perspective:Crossref | GoogleScholarGoogle Scholar |
Rijks, E. J. H., and Jauffred, J. C. E. M., 1991, Attribute extraction: an important application in any detailed 3D interpretation study: The Leading Edge, 10, 11–19
| Attribute extraction: an important application in any detailed 3D interpretation study:Crossref | GoogleScholarGoogle Scholar |
Robb, L. J., Charlesworth, E. G., Drennan, G. R., Gibson, R. L., and Tongu, E. L., 1997, Tectono-metamorphic setting and paragenetic sequence of Au-U mineralisation in the Archaean Witwatersrand Basin, South Africa: Australian Journal of Earth Sciences, 44, 353–371
| Tectono-metamorphic setting and paragenetic sequence of Au-U mineralisation in the Archaean Witwatersrand Basin, South Africa:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltVCjur8%3D&md5=76d5d5af0727c579d428ca228ecfd9ebCAS |
Safonov, G. Yu., and Prokofèv, V. Yu., 2006, Gold-bearing reefs of the Witwatersrand Basin: a model of syn-sedimentation hydrothermal formation: Geology of Ore Deposits, 48, 415–447
| Gold-bearing reefs of the Witwatersrand Basin: a model of syn-sedimentation hydrothermal formation:Crossref | GoogleScholarGoogle Scholar |
Salisbury, M. H., Harvey, G. W., and Mathews, L., 2003, The acoustic properties of ores and host rocks in hardrock terranes, in D. W. Eaton, B. Milkereit, and M. H. Salisbury, eds., Hardrock seismic exploration: geophysical developments, 10: Society of Exploration Geophysicists, 9–19.
Sheriff, R. E., 1991, Encyclopedic dictionary of exploration geophysics: Society of Exploration Geophysics.
Sherwood Lollar, B., Lacrampe-Couloume, G., Slater, G. F., Ward, J, Moser, D. P., Gihring, T. M., Lin, L.-H., and Onstott, T. C., 2006, Unravelling abiogenic and biogenic sources of methane in the Earth’s deep subsurface: Chemical Geology, 226, 328–339
| Unravelling abiogenic and biogenic sources of methane in the Earth’s deep subsurface:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFGgu7k%3D&md5=aaf0d152393a1ed333f95f6c3bf59e0cCAS |
Smith, A. J. B., Beukes, N. J., and Gutzmer, J, 2013, The composition and depositional environments of mesoarchean Iron Formations of the West Rand Group of the Witwatersrand Supergroup, South Africa: Economic Geology, 108, 111–134
| 1:CAS:528:DC%2BC3sXlvFaguw%3D%3D&md5=151acdf9e14c95bc13bfe11e20c9e240CAS |
Stevenson, F., Higgs, R. M. A., and Durrheim, R. J., 2003, Seismic imaging of precious and basemetal deposits in South Africa, in D. W. Eaton, B. Milkereit, and M. H. Salisbury, eds., Hardrock seismic exploration: Geophysical Developments, 10: Society of Exploration Geophysicists, 141–156.
Taner, M. T., Koehler, F., and Sheriff, R. E., 1979, Complex seismic trace analysis: Geophysics, 44, 1041–1063
| Complex seismic trace analysis:Crossref | GoogleScholarGoogle Scholar |
Van der Westhuizen, W. A., De Bruiyn, H., and Meintjes, P. G., 1991, The Ventersdorp Supergroup: an overview: Journal of African Earth Sciences, 13, 83–105
| The Ventersdorp Supergroup: an overview:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtlKgtL0%3D&md5=51a155542bb7bc2a51ac7df2b5af36e8CAS |
Vieira, F. M., and Durrheim, R. J., 2002, Probabilistic mine design methods to reduce rock burst risk: Journal of the South African Institute of Mining and Metallurgy, 102, 231–242
Viljoen, M., 2009, The life, death and revival of the Central Rand goldfield: Special Publication for the World Gold Conference, 131–138.
Wanger, G., Moser, D., Hay, M., Myneni, S., Onstott, T. C., and Southam, G., 2012, Mobile hydrocarbon microspheres from >2-billion-year-old carbon-bearing seams in the South African deep subsurface: Geobiology, 10, 496–505
| Mobile hydrocarbon microspheres from >2-billion-year-old carbon-bearing seams in the South African deep subsurface:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVyltw%3D%3D&md5=61ce3fef9fc4b2635598edb9ebfc7403CAS |
White, R. E., 1991, Properties of instantaneous seismic attributes: The Leading Edge, 10, 26–32
| Properties of instantaneous seismic attributes:Crossref | GoogleScholarGoogle Scholar |
Widess, M. B., 1973, How thin is thin bed?: Geophysics, 38, 1176–1180
| How thin is thin bed?:Crossref | GoogleScholarGoogle Scholar |
Wronkiewicz, D. J., and Condie, K. C., 1987, Geochemistry of Archaean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance: Geochimica et Cosmochimica Acta, 51, 2401–2416
| Geochemistry of Archaean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtVamtrY%3D&md5=9d11e87618a746a922600497c997c838CAS |
Zeng, H., 2009, How thin is a thin bed? An alternative perspective: The Leading Edge, 28, 1192–1197
| How thin is a thin bed? An alternative perspective:Crossref | GoogleScholarGoogle Scholar |