A comparison of seed yields of winter grain legumes in Western Australia
KHM Siddique, GH Walton and M Seymour
Australian Journal of Experimental Agriculture
33(7) 915 - 922
Published: 1993
Abstract
Field trials were conducted in 2 seasons at 13 sites on neutral to alkaline soils in Western Australia, to compare the growth and seed yield of 6 winter grain legume species: field pea (Pisum sativum L.), chickpea (Cicer arietinum L.), faba bean (Vicia faba L.), lentil (Lens culinaris Medik), narrow leaf lupin (Lupinus angustifolius L.), albus lupin (L. albus). In a dry year (1991), overall site mean seed yield was highest for field pea (1.35 t/ha), then faba bean (1.22 t/ha) and narrow leaf lupin (0.85 t/ha). Chickpea, lentil line ILL5728, and albus lupin produced an average seed yield of 0.64 t/ha. Rainfall in 1992 was above average and seed yields of all species except field pea were higher than in 1991. Heavy rainfall in winter and spring caused transient waterlogging at several sites, affecting growth and seed yield of most species. Faba bean responded positively to the increase in rainfall and produced exceptional seed yields of >4 t/ha at 3 sites. Mean seed yield was highest for faba bean, at 2.87 t/ha, then narrow leaf lupin (1.19 t/ha), chickpea (1.1 t/ha), and field pea (1.0 t/ha). Field pea performed poorly at several sites due to its susceptibility to transient waterlogging and black spot disease (caused by Mycosphaerella pinoides). Albus lupin and lentil line ILL5728 produced similar seed yields (0.78 t/ha). Lentil cvv. Laird (1991) and Kye (1992) had low seed yields due to poor adaptation. Seed yield differences between species at various locations were not simply related to any soil chemical parameters or to depth to clay. On a calcareous soil of pH(CaC12) 8 at Dongara, the growth of narrow leaf lupin was severely affected and the crop failed. Days to flowering varied between species; faba bean was earliest to flower (76 days), then field pea. Faba bean and field pea (particularly in 1991) generally produced the most dry matter, both early and at final harvest. The relationship between seed yield and rainfall was complicated by transient waterlogging and fungal disease (e.g. black spot in field pea) at many sites. Seed yield was significantly positively related to final dry matter production but not to harvest index.https://doi.org/10.1071/EA9930915
© CSIRO 1993