Measuring and predicting the consequences of drought for a range of perennial grasses on the Northern Tablelands of New South Wales
Australian Journal of Experimental Agriculture
40(2) 285 - 297
Published: 2000
Abstract
An experiment was conducted at Armidale, New South Wales to evaluate the persistence and productivity of 6 perennial grasses under 2 defoliation severities and a range of moisture/drought conditions created using a rain-out shelter. Defoliation was either moderate or severe whilst the moisture/drought conditions imposed included a non-stressed moisture treatment, and seasonal droughts simulated as 40-percentile (40-P) and 10-percentile rainfall (10-P). The treatments were applied over 2 experimental seasons; spring–summer and summer–autumn. A range of measurements was taken including plant mortality, basal area, foliage greenness, herbage mass, growth rate and digestibility. Some of these results were then used as inputs to the GrazFeed decision support system to predict liveweight gain and wool growth rate from pastures growing under such conditions.Plant mortality of over 40% was observed in Dactylis glomerata and Lolium perenne under moderate (40-P) drought conditions during spring–summer. In contrast, under severe drought conditions (10-P), less than 20% of plants died, suggesting that, when combined with defoliation stress, a more common drought can present a greater hazard to plant persistence than a severe drought during spring–summer. Plant mortality was reduced and non-significant when subjected to the summer–autumn drought treatments.
Plant growth and predictions of animal productivity varied widely among the species challenged with drought and defoliation stresses. Predicted liveweight gains of weaner sheep under severe drought conditions (10-P) varied between species ranging from 20 to 110 g/day. Under the same conditions, predicted wool growth rates varied between species from 5 to 11 g/wether. day, while pasture growth rates varied from a low of 0 to more than 120 kg DM/ha. day. The animal effects were due largely to differences in herbage mass and the degree to which the grass remained green. These results highlight the importance of maintaining the most productive species in pastures through drought.
https://doi.org/10.1071/EA98014
© CSIRO 2000