Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Effect of nitrogen fertiliser application and length of lock up on dairy pasture dry matter yield and quality for silage in south-western Victoria

J. L. Jacobs, F. R. McKenzie, S. E. Rigby and G. Kearney

Australian Journal of Experimental Agriculture 38(3) 219 - 226
Published: 1998

Abstract

Summary. This study aimed to define the effect of differing rates of nitrogen application and lock up length on harvested material for silage in south-western Victoria. At 2 sites in south-western Victoria, 140, 3 by 2 m plots of predominantly perennial ryegrass pasture were randomly allocated, within 4 replicate blocks. Five nitrogen fertiliser rates (0, 25, 50, 75, 100 kg N/ha) in combination with 7 lock up lengths were randomly allocated to the 35 plots within each replicate. Nitrogen was applied 1 week after initial lock up (September 10, site 1; September 12, site 2) and harvesting commenced 3 weeks after initial lock up. For each treatment and harvest date, dry matter yield and botanical composition were determined and samples of total pasture and the ryegrass fraction were collected and chemically analysed for dry matter digestibility, crude protein, neutral detergent fibre, water-soluble carbohydrates and mineral content. Metabolisable energy was derived from dry matter digestibility.

Increasing rates of nitrogen increased herbage dry matter yield regardless of length of lock up. The yield response was greatest 8 weeks after initial lock up at both sites (site 1, 26 kg DM/kg N; site 2, 14.9 kg DM/kg N). Subsequent regrowth of pasture was increased by nitrogen application over shorter lock up lengths (weeks 3 and 4). Botanical composition was unaffected by treatment during the harvesting period or in the subsequent autumn. Application of nitrogen gave rise to a linear increase in pasture metabolisable energy and crude protein content at both sites until week 5. Thereafter, this response diminished and by week 8 there was a decrease in metabolisable energy and crude protein content. Neutral detergent fibre content was relatively unaffected by nitrogen application until week 8 of the study, at which point there was a linear increase. Application of nitrogen reduced the water-soluble carbohydrate content of pastures throughout the sampling period.

It is concluded that application of nitrogen to a mixed sward locked up for silage can increase dry matter yield and, provided pasture is harvested before ryegrass ear emergence, can also have a positive effect on metabolisable energy and crude protein. Given that the decision for removing paddocks from the grazing rotation is based upon pasture growth and stocking rates, the use of nitrogen fertilisers on higher stocked farms could lead to increased dry matter yield over shorter lock up periods. On farms with lower stocking rates shorter lock up periods may allow for pastures to be returned to the grazing rotation earlier, or provide the opportunity for a second harvest of pasture for silage.

https://doi.org/10.1071/EA97151

© CSIRO 1998

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions