Effects of differential grazing of annual pastures in spring and age of sheep on pasture and sheep production
Australian Journal of Experimental Agriculture
37(7) 727 - 736
Published: 1997
Abstract
Summary. The effects of controlled grazing through spring on the production of young (age 1 year; liveweight 38.3 ± 0.09 kg; condition score 3.0 ± 0.03) and mature (age 3 years; liveweight 61.9 ± 0.36 kg; condition score 3.1 ± 0.04) Merino wethers was examined. The grazing treatments involved adjusting sheep numbers to maintain green feed on offer near target amounts of 800, 1200, 1600, 2000, 2400 and 2800 kg dry matter/ha. Liveweight and wool growth measurements were made on 8 sheep per plot, with additional animals added or removed as necessary to maintain pasture near the target feed on offer.Changes in wool-free liveweight were linear between days 0 and 42 (period 1), and days 42 and 111 (period 2) for both classes of sheep grazing low feed on offer treatments. Hoggets lost less liveweight than mature animals while grazing low feed on offer during period 1 and gained liveweight faster (P<0.05) than mature animals for any feed on offer during period 2. Curvilinear relationships existed between feed on offer and clean wool growth rate and fibre diameter, with feed on offer accounting for 65 and 81% of the variations in wool growth rate, and 65 and 73% of the variations in fibre diameter, for hogget and mature sheep respectively.
There was no significant difference in wool growth rate between animal classes. Annual clean wool production, fibre diameter and staple length increased linearly (P<0.05) with increasing feed on offer. Staple strength was higher (P<0.05) in mature sheep compared with hoggets, but was greater than 30 N/ktex for both classes of sheep irrespective of feed on offer. These results indicate that intensive grazing in spring to predetermined feed on offer is a useful tactic for manipulation of wool growth and fibre diameter, but factors other than feed on offer also contribute to liveweight change and wool growth.
https://doi.org/10.1071/EA96036
© CSIRO 1997