Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Effects of windbreak structure on shelter characteristics

P. R. Bird A C , T. T. Jackson A , G. A. Kearney A and A. Roache B
+ Author Affiliations
- Author Affiliations

A Department of Primary Industries, Private Bag 105, Hamilton, Vic. 3300, Australia.

B ‘Glenwood’, Hawkesdale, Vic. 3287, Australia.

C Corresponding author. Email: rod.bird@dpi.vic.gov.au

Australian Journal of Experimental Agriculture 47(6) 727-737 https://doi.org/10.1071/EA06086
Submitted: 24 March 2006  Accepted: 18 October 2006   Published: 17 May 2007

Abstract

Eleven windbreaks (Monterey cypress, Monterey pine, tuart, sugar gum, black wattle and mixed native species) were studied in south-west Victoria. Windrun (U) was measured with cup anemometers set above ground (Z) at 1.5 m and 0.5 m (eight windbreaks), 1.5 m (two windbreaks), or 0.5 and 0.25 m (0.95 m mesh). The U pattern (U/U0, where U0 is open windspeed) was: (1) to windward, a shelter effect to at least –3 H, (where H means windbreak height) with a reduction of 20% or more at –1 H and (2) to lee, Xmin (position of minimum windspeed, Umin) from 1–7 H; Umin (minimum U/Uo) varied with windbreak density; and XS (distance where U/U0 is <0.8) varied from 8–25 H. Optical porosity (βO) was 0.16–0.53 compared with 0.24–0.61 for aerodynamic porosity (βA), obtained from the ratio of Umin and U0. βA from present data and calculated for windbreaks of previous studies, showed a curvilinear effect of windbreak porosity (βA, %) on Xmin, but little effect on XS: Xmin (H) = 3.008LnβA – 6.6 (adjusted r2 = 0.33, P < 0.0001, r.s.d. = 1.8); XS (H) = 12.2+ 0.307βA – 0.0047βA2 (adjusted r2 = 0.07, P < 0.08, r.s.d. = 4.1). Effective shelter is best obtained by establishing tall, dense windbreaks and excluding browsing livestock.


Acknowledgements

We acknowledge the following landholders who gave us access to their shelterbelts: G. Hermann, ‘Kanandah’, Cartys Rd, Hamilton; G. Roache, ‘Glenwood’, Hawkesdale; J. Gubbins, ‘Coolana’, Chatsworth; P. Waldron, ‘Willandra’, Melville Forest; R. Jamieson, ‘Bolac Plains’, Woorndoo; R. Dawson, ‘Kooringal’, Hawkesdale; B. Milne, ‘Helm View’, Melville Forest. We also acknowledge the assistance of Kay Aldridge, John Cayley, Keith Cumming and Glenys Downes for technical assistance at various stages of this work. Anne Roache collected data from the Hawkesdale shelterbelts as part of a degree of Bachelor of Agricultural Science with La Trobe University.


References


Bates CG (1911) Windbreaks: their influence and value. US Department of Agriculture, Forest Services Bulletin 86. Washington.

Bean A, Alperi RW, Federer CA (1974) A method for categorizing shelterbelt porosity. Agricultural Meteorology 14, 417–429.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bird PR (1986) Trees in Western Victoria – an historical perspective. Trees and Victoria's Resources 28, 9–11. open url image1

Bird PR (1998) Tree windbreaks and shelter benefits to pastures in temperate grazing systems. Agroforestry Systems 41, 35–54.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bird PR, Cayley J (1991) Bad weather, shelter and stock losses. Agricultural Science 4, 18–19. open url image1

Bird PR, Lynch JJ, Obst JM (1984) Effect of shelter on plant and animal production. Proceedings of the Australian Society of Animal Production 15, 270–273. open url image1

Bird PR, Bicknell D, Bulman PA, Burke SJA, Leys JF, Parker JN, van der Sommen FJ, Voller P (1992) The role of shelter in Australia for protecting soils, plants and livestock. Agroforestry Systems 20, 59–86.
Crossref | GoogleScholarGoogle Scholar | open url image1

Caborn JM (1957) Shelterbelts and microclimate. Forestry Commission Bulletin No. 29. Forestry Commission, Edinburgh, UK. 135 pp.

Cayley JWD, Bird PR (1991) Bad weather, shelter and stock losses after shearing. In ‘Proceedings of the.conference on agricultural meteorology. 17–19 July’. pp. 251–254. (National Committee on Agrometeorology and Bureau of Meteorology, University of Melbourne)

Cleugh HA (1998) Effects of windbreaks on airflow, microclimates and crop yields. Agroforestry Systems 41, 55–84.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cleugh HA (2002) Field measurements of windbreak effects on airflow, turbulent exchanges and microclimates. Australian Journal of Experimental Agriculture 42, 665–677.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cleugh H (2003) ‘Trees for shelter – a guide to using windbreaks on Australian farms.’ (Joint Venture Agroforestry Program) 70 pp.

Cleugh HA, Hughes DE (2002) Impact of shelter on crop microclimates: a synthesis of results from wind tunnel and field experiments. Australian Journal of Experimental Agriculture 42, 679–701.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cleugh HA, Miller JM, Bohm M (1998) Direct mechanical effects of wind on crops. Agroforestry Systems 41, 85–112.
Crossref |
open url image1

van Eimern J, Karschon R, Razumova LA, Robertson GW (1964) Windbreaks and shelterbelts. World Meteorological Organisation Technical Note 59. pp. 1–188.

George EJ, Broberg D, Worthington EL (1963) Influence of various types of field windbreaks on reducing wind velocities and depositing snow. Journal of Forestry 61, 345–349. open url image1

Heisler GM, deWalle DR (1988) Effects of windbreak structure on wind flow. Agriculture Ecosystems & Environment 22–23, 41–69.
Crossref | GoogleScholarGoogle Scholar | open url image1

Judd MJ, Raupach MR, Finnigan JJ (1996) A wind tunnel study of turbulent flow around single and multiple windbreaks. Boundary-Layer Meteorology 80, 127–165.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kaiser H (1959) Die Strömung an Windschutzstreifen. Bereich des Deutschen Wetterdienstes Bad Kissingen 7, 1–36. open url image1

Kort J (1988) Benefits of windbreaks to field and forage crops. Agriculture Ecosystems & Environment 22–23, 165–190.
Crossref | GoogleScholarGoogle Scholar | open url image1

Marshall JK (1967) The effect of shelter on the productivity of grasslands and field crops. Field Crop Abstracts 20, 1–14. open url image1

Nägeli W (1943) Untersuchungen über die Windverhältnisse im Bereich von Windschutzstreifen. Mitteilungen für die Schweizerische Anstalt für das forstliche Versuchswesen 23, 223–276. open url image1

Nägeli W (1946) Weitere Untersuchungen über die Windverhältnisse im Bereich von Windschutzstreifen. Mitteilungen für die Schweizerische Anstalt für das forstliche Versuchswesen 24, 660–737. open url image1

Nuberg IK (1998) Effect of shelter on temperate crops: a review to define research for Australian conditions. Agroforestry Systems 41, 3–34.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sturrock JW (1969) Aerodynamic studies of shelterbelts in New Zealand -1. Low to medium height shelterbelts in mid Canterbury. New Zealand Journal of Science 12, 754–776. open url image1

Sturrock JW (1972) Aerodynamic studies of shelterbelts in New Zealand -2. Medium height to tall shelterbelts in mid Canterbury. New Zealand Journal of Science 15, 113–140. open url image1

Wang H, Takle ES (1995) A numerical simulation of boundary layer flows near shelterbelts. Boundary-Layer Meteorology 75, 141–173.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wang H, Takle ES (1996) On shelter efficiency of shelterbelts in oblique wind. Agricultural and Forestry Meteorology 81, 95–117.
Crossref | GoogleScholarGoogle Scholar | open url image1










Appendix 1.  Field research of Nägeli (1943, 1946) on windbreaks in Switzerland
Click to zoom



Appendix 2.  Field research of Caborn (1957) on windbreaks in Scotland
Click to zoom



Appendix 3.  Field research of Sturrock (1969, 1972) on narrow windbreaks in New Zealand
Click to zoom