Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
REVIEW

Bovine mammary epithelial cells, initiators of innate immune responses to mastitis

C. Gray A B C , Y. Strandberg A B , L. Donaldson A B and R. L. Tellam A B C
+ Author Affiliations
- Author Affiliations

A CSIRO Livestock Industries, Queensland Biosciences Precinct, 306 Carmody Road, St Lucia, Qld 4067, Australia.

B Co-operative Research Centre for Innovative Dairy Products, Level 1, 84 William Street, Melbourne, Vic. 3000, Australia.

C Corresponding author. Email: Ross.Tellam@csiro.au

Australian Journal of Experimental Agriculture 45(8) 757-761 https://doi.org/10.1071/EA05046
Submitted: 14 February 2005  Accepted: 27 April 2005   Published: 26 August 2005

Abstract

Innate immunity plays a vital role in the protection of the bovine mammary gland against mastitis. Until recently, the migration of effector cells such as neutrophils and monocytes into the mammary gland was thought to provide the only defence against invading pathogens. However, mammary epithelial cells may also play an important role in the immune response, contributing to the innate defence of the mammary tissue through secretion of antimicrobial peptides and attraction of circulating immune effector cells. This paper reviews the innate immune pathways in mammary epithelial cells and examines their role in the initiation of an innate immune response to Gram-positive and Gram-negative bacteria.

Additional keywords: epithelia, lipopolysaccharide, lipoteichoic acid.


References


Anderson KV (2000) Toll signalling pathways in the innate immune response. Current Opinion in Immunology 12, 13–19.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bannerman DD, Paape MJ, Lee JW, Zhao X, Hope JC, Rainard P (2004) Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clinical and Diagnostic Laboratory Immunology 11, 463–472.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bannerman DD, Paape MJ, William RH, Sohn EJ (2003) Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge. Journal of Dairy Science 86, 3128–3137.
PubMed |
open url image1

Barkema HW, Schukken YH, Lam TJ, Beiboer ML, Wilmink H, Benedictus G, Brand A (1998) Incidence of clinical mastitis in dairy herds grouped in three categories by bulk somatic cell counts. Journal of Dairy Science 81, 411–419.
PubMed |
open url image1

Boudjellab N, Chan-Tang HS, Zhao X (2000) Bovine interleukin-1 expression by cultured mammary epithelial cells (MAC-T) and its involvement in the release of MAC-T derived interleukin-8. Comparative Biochemistry and Physiology. Part A. Molecular and Integrative Physiology 127, 191–199.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK (2000) Lipopolysaccharide activates distinct signalling pathways in intestinal epithelial cell lines expressing Toll-Like Receptors. Journal of Immunology (Baltimore, Md. : 1950) 164, 966–972.
PubMed |
open url image1

Diamond G, Kaiser V, Rhodes J, Russell JP, Bevins CL (2000) Transcriptional regulation of β-Defensin gene expression in tracheal epithelial cells. Infection and Immunity 68, 113–119.
PubMed |
open url image1

Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL (1991) Tracheal anti-microbial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proceedings of the National Academy of Sciences of the United States of America 88, 3952–3956.
PubMed |
open url image1

Dinarello CA (1994) The biological properties of interleukin-1. European Cytokine Network 5, 517–531.
PubMed |
open url image1

Fellermann K, Stange EF (2001) Defensins — innate immunity at the epithelial frontier. European Journal of Gastroenterology and Hepatology 13, 771–776.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gangur V, Birmingham NP, Thanesvorakul S (2002) Chemokines in health and disease. Veterinary Immunology and Immunopathology 86, 127–136.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Garcia JR, Jaumann F, Schulz S, Krause A, Rodriguez-Jimenez J , et al. (2001) Identification of a novel, multifunctional β-defensin (human β-defensin 3) with specific anti-microbial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell and Tissue Research 306, 257–264.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Goldammer T, Zerbe H, Molenaar A, Schuberth HJ, Brunner RM, Kata SR, Seyfert HM (2004) Mastitis increases mammary mRNA abundance of β-defensin 5, Toll-Like Receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clinical and Diagnostic Laboratory Immunology 11, 174–185.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N, Matsushima K (1994) Essential involvement of interleukin-8 (IL-8) in acute inflammation. Journal of Leukocyte Biology 56, 559–564.
PubMed |
open url image1

Koj A (1996) Initiation of acute phase response and synthesis of cytokines. Biochimica et Biophysica Acta 1317, 84–94.
PubMed |
open url image1

Kopp EB, Medzhitov R (1999) The toll-receptor family and control of innate immunity. Current Opinion in Immunology 11, 13–18.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kopp E, Medzhitov R (2003) Recognition of microbial infection by toll-like receptors. Current Opinion in Immunology 15, 396–401.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Le JM, Vilcek J (1989) Interleukin 6: a multifunctional cytokine regulating immune reactions and the acute phase protein response. Laboratory Investigation 61, 588–602.
PubMed |
open url image1

Leitner G, Shoshani E, Krifucks O, Chaffer M, Saran A (2000) Milk leukocyte population patterns in bovine udder infection of different aetiology. Journal of Veterinary Medicine. B, Infectious Diseases and Veterinary Public Health 47, 581–589.
PubMed |
open url image1

Lien E, Ingalls RR (2002) Toll-like receptors. Critical Care Medicine 30, S1–S11.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mackay CR (2001) Chemokines: immunology’s high impact factors. Nature Immunology 2, 95–101.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Moser B, Willimann K (2004) Chemokines: role in inflammation and immune surveillance. Annals of the Rheumatic Diseases 63, ii84–ii89.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends in Immunology 25, 75–84.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

National Mastitis Council (1996) ‘Current concepts of bovine mastitis.’ 4th edn. (National Mastitis Council: Madison, WI)

Philpott DJ, Girardin SE, Sansonetti PJ (2001) Innate immune responses of epithelial cells following infection with bacterial pathogens. Current Opinion in Immunology 13, 410–416.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rainard P, Riollet C (2003) Mobilization of neutrophils and defense of the bovine mammary gland. Reproduction, Nutrition, Development 43, 439–457.
PubMed |
open url image1

Rainard P, Riollet B, Poutrel B, Paape MJ (2000) Phagocytosis and killing of Staphylococcus aureus by bovine neutrophils after priming by tumor necrosis factor-alpha and the des-argininine derivative of C5a. American Journal of Veterinary Research 61, 951–959.
PubMed |
open url image1

Rambeaud M, Almeida RA, Pighetti GM, Oliver SP (2003) Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Veterinary Immunology and Immunopathology 96, 193–205.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Roosen S, Exner K, Paul S, Schröder J-M, Kalm E, Looft C (2004) Bovine β-defensins: identification and characterization of novel bovine β-defensin genes and their expression in mammary gland tissue. Mammalian Genome 15, 834–842.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annual Review of Immunology 18, 217–242.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Russell JP, Diamond G, Tarver AP, Scanlin TF, Bevins CL (1996) Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumour necrosis factor alpha. Infection and Immunity 64, 1565–1568.
PubMed |
open url image1

Sahl HG, Pag U, Bonness S, Wagner S, Antcheva N, Tossi A (2005) Mammalian defensins: structures and mechanism of antibiotic activity. Journal of Leukocyte Biology 77, 466–475.
Crossref | PubMed |
open url image1

Schonwetter BS, Stolzenberg ED, Zasloff MA (1995) Epithelial antibiotics induced at sites of inflammation. Science 267, 1645–1647.
PubMed |
open url image1

Schukken YH, Wilson DJ, Welcome F, Garrison-Tikofsky L, Gonzalez RN (2003) Monitoring udder health and milk quality using somatic cell counts. Veterinary Research 34, 579–596.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, Smith W, Henschen AH, Cullor JS (1993) Purification, primary structures, and antibacterial activities of beta-defensins, a new family of anti-microbial peptides from bovine neutrophils. The Journal of Biological Chemistry 268, 6641–6648.
PubMed |
open url image1

Smith KL, Hogan JS (1993) Environmental mastitis. The Veterinary Clinics of North America. Food Animal Practice 9, 489–498.
PubMed |
open url image1

Sordillo LM, Shafer-Weaver K, DeRosa D (1997) Immunobiology of the mammary gland. Journal of Dairy Science 80, 1851–1865.
PubMed |
open url image1

Strandberg Y, Gray C, Vuocolo T, Donaldson L, Broadway M, Tellam R (2005) Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine 31, 72–86.
Crossref | PubMed |
open url image1

Suffredini AF, Fantuzzi G, Badolato R, Oppenheim JJ, O’Grady NP (1999) New insights into the biology of the acute phase response. Journal of Clinical Immunology 19, 203–214.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sutra L, Poutrel B (1994) Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus. Journal of Medical Microbiology 40, 79–89.
PubMed |
open url image1

Tabeta K, Georgel P, Janssen E, Du X, Hoebe K , et al. (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proceedings of the National Academy of Sciences of the United States of America 101, 3516–3521.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annual Review of Immunology 21, 335–376.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-positive and gram-negative bacterial cell wall components. Immunity 11, 443–451.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tarver AP, Clark DP, Diamond G, Russell JP, Erdjument-Bromage H , et al. (1998) Enteric β-defensin: molecular cloning and characterization of a gene with inducible intestinal epithelial cell expression associated with Cryptosporidium parvum infection. Infection and Immunity 66, 1045–1056.
PubMed |
open url image1

Winter P, Schilcher F, Fuchs K, Colditz IG (2003) Dynamics of experimentally induced Staphylococcus epidermidis mastitis in East Friesian milk ewes. The Journal of Dairy Research 70, 157–164.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ , et al. (1999) β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: recognition of gram-positive bacterial cell wall components by the innate immune system occurs via Toll-Like Receptor 2. Journal of Immunology (Baltimore, Md. : 1950) 163, 1–5.
PubMed |
open url image1

Youngerman SM, Saxton AM, Oliver SP, Pighetti GM (2004) GM Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle. Journal of Dairy Science 87, 2442–2448.
PubMed |
open url image1

Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1