Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Grain yield and cadmium concentration of a range of grain legume species grown on two soil types at Merredin, Western Australia

R. F. Brennan A C and R. J. French B
+ Author Affiliations
- Author Affiliations

A WA Department of Agriculture, 444 Albany Highway, Albany, WA 6330, Australia.

B WA Department of Agriculture, PO Box 432, Merredin, WA 6415, Australia, and Centre for Legumes in Mediterranean Agriculture, University of Western Australia, Nedlands, WA 6009, Australia.

C Corresponding author. Email: rbrennan@agric.wa.gov.au

Australian Journal of Experimental Agriculture 45(9) 1167-1172 https://doi.org/10.1071/EA03137
Submitted: 30 June 2003  Accepted: 10 May 2004   Published: 10 October 2005

Abstract

Five grain legumes species, narrow-leafed lupin (Lupinus angustifolius L.), field pea (Pisum sativum L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), and yellow lupin (Lupinus luteus L.), were grown on 2 soil types, a red clay and red duplex soil, in the < 400 mm rainfall district of Western Australia. The study showed that chickpea, field pea and faba bean accumulated less cadmium (Cd) in dried shoots and grain than narrow-leafed lupin. Yellow lupin had Cd concentrations ~3 times higher in dried shoots and ~9 times higher in grain than narrow-leafed lupin. For both experiments, the ranking (lowest to highest) of mean Cd concentration (mg Cd/kg) in the grain was: chickpea (0.017) < field pea (0.024) = faba bean (0.024) < narrow-leafed lupin (0.033) < yellow lupin (0.300).

Additional keywords: narrow-leafed lupin, field pea, faba bean, chickpea, yellow lupin, Lupinus.


Acknowledgments

Staff of Merredin Research Station provided technical assistance in seeding and harvesting the experiment. Ms N. Wilkins and Mr L. Wahlsten provided technical assistance for measuring yields, and collecting soil and tissue samples and preparing the samples for chemical analyses. The Chemistry Centre (WA) measured soil properties. Dr S. Mann of the Chemistry Centre (WA) is thanked for the measurement of the concentration of cadmium in soil, plant tissue and grain. The Grain Research and Development Corporation (DAW 583) and the Western Australian Department of Agriculture provided funds.


References


Allen DG, Jeffery RC (1990) ‘Methods of analysis of phosphorus in Western Australia soils. Report of investigation No 37.’ (Chemistry Centre of Western Australia: East Perth)

Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126. open url image1

Barrow NJ (1987) ‘Reactions with variable-charge soils.’ (Martinus Nijhoff Publishers: Dordrecht)

Barrow NJ (1999) Four laws of soil chemistry: The Leeper lecture 1998. Australian Journal of Soil Research 37, 787–829. open url image1

Barrow NJ, Gerth J, Brummer GW (1989) Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. II. Modelling the extent and rate of reaction. Journal of Soil Science 40, 437–450. open url image1

Bartlett R, Riego R (1972) Effect of chelation on the toxicity of aluminium. Plant and Soil 37, 419–423.
Crossref |
open url image1

Blair GJ, Chinoim N, Lefroy RDB, Anderson GC, Croker GJ (1991) A soil sulfur test for pastures and crops. Australian Journal of Soil Research 29, 619–626.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brennan RF, Bolland MDA (2003) Lupinus luteus cv. Wodjil takes up more phosphorus and cadmium than Lupinus angustifolius cv. Kalya. Plant and Soil 248, 167–185.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brennan RF, Bolland MDA (2004) Wheat and canola response to concentrations of phosphorus and cadmium in a sandy soil. Australian Journal of Experimental Agriculture 44, 1025–1029.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brennan RF, Bolland MDA, Shea G (2001) Comparing how Lupinus angustifolius and Lupinus luteus use zinc fertilizer for seed production. Nutrient Cycling in Agroecosystems 59, 209–217.
Crossref | GoogleScholarGoogle Scholar | open url image1

Colwell JD (1963) The estimation of phosphorus fertiliser requirements of wheat in southern New South Wales by soil analysis. Australian Journal of Experimental Agriculture and Animal Husbandry 3, 190–197.
Crossref | GoogleScholarGoogle Scholar | open url image1

Colwell JD, Esdaile RJ (1968) The calibration, interpretation, and evaluation of tests for phosphorus fertiliser requirements of wheat in northern New South Wales. Australian Journal of Soil Research 6, 105–120.
Crossref | GoogleScholarGoogle Scholar | open url image1

Davies SL, Turner NC, Siddique KHM, Plummer JA, Leport L (1999) Seed growth of desi and kabuli chickpea (Cicer arietinum L.) in a short-season Mediterranean-type environment. Australian Journal of Experimental Agriculture 39, 181–188.
Crossref | GoogleScholarGoogle Scholar | open url image1

Edwards NK (1998) Potassium. In ‘Soilguide: a handbook for understanding and managing agricultural soils’. Bulletin 4343. (Ed G Moore) pp. 176–180. (Agriculture Western Australia: South Perth)

French RJ (2002) Soil factors influencing growth and yield of narrow-leaf lupin and field pea in Western Australia. Australian Journal of Agricultural Research 53, 217–225.
Crossref | GoogleScholarGoogle Scholar | open url image1

French RJ, Ewing MA (1989) Soil type influences the relative yields of different cereal and crop legumes in the Western Australian wheatbelt. Australian Journal of Experimental Agriculture 29, 829–835.
Crossref | GoogleScholarGoogle Scholar | open url image1

French RJ, McCarthy K, Smart WL (1994) Optimum plant population densities for lupin (Lupinus angustifolius L.) in the wheatbelt of Western Australia. Australian Journal of Experimental Agriculture 34, 491–497.
Crossref | GoogleScholarGoogle Scholar | open url image1

French RJ, Sweetingham MW, Shea GG (2001) A comparison of the adaptation of yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) to acid sandplain soils in low rainfall agricultural areas of Western Australia. Australian Journal of Agricultural Research 52, 945–954.
Crossref | GoogleScholarGoogle Scholar | open url image1

Garlinge J, Robartson D (Eds) (1998) ‘The crop variety sowing guide.’ Bulletin 4341. (Agriculture Western Australia: South Perth)

Gerke J (1997) Aluminium and iron (III) species in the soil solution including organic complexes with citrate and humic substances. Zeitschrift fur Pflanzenernahrung und Bodenkunde 160, 427–432. open url image1

Isbell RF (1996) ‘The Australian soil classification.’ (CSIRO Publishing: Collingwood)

Jessop RS, Orth G, Sale P (1990) Effects of increased levels of soil CaCO3 on lupin (Lupinus angustifolius) growth and nutrition. Australian Journal of Soil Research 28, 955–962.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jettner RJ, Siddique KHM, Loss SP, French RJ (1999) Optimum plant density of desi chickpea (Cicer arietinum L.) increases with increasing yield potential in south-western Australia. Australian Journal of Agricultural Research 50, 1017–1025.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kuboi Y, Noguchi A, Yazaki J (1986) Family-dependent cadmium accumulation in higher plants. Plant and Soil 92, 405–415. open url image1

Loss SP, Siddique KHM, Jettner R, Martin LD (1998) Responses of faba bean (Vicia faba L.) to sowing rate in south–western Australia. I. Seed yield and economic optimum plant density. Australian Journal of Agricultural Research 49, 989–997.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mann SS, Rate AW, Gilkes RJ (2002) Cadmium accumulation in agricultural soils in Western Australia. Water, Air, and Soil Pollution 141, 281–297.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mann SS, Ritchie GSP (1993) The influence of pH on the forms of cadmium in four Western Australian soils. Australian Journal of Soil Research 31, 255–270.
Crossref | GoogleScholarGoogle Scholar | open url image1

McArthur WM (1991) ‘Reference soils of south-western Australia.’ (Australian Society of Soil Science, WA Branch Inc.: Perth)

McLaughlin MJ, Simpson PG, Fleming N, Stevens DP, Cozens G, Smart MK (1997) Effect of fertiliser type on cadmium and fluorine concentrations in clover herbage. Australian Journal of Experimental Agriculture 37, 1019–1026.
Crossref | GoogleScholarGoogle Scholar | open url image1

McLaughlin MJ, Tiller KG, Naidu R, Stevens DP (1996) Review: The behaviour and environmental impact of contaminants in fertilizers. Australian Journal of Soil Research 34, 1–54.
Crossref | GoogleScholarGoogle Scholar | open url image1

McQuaker NR, Brown DF, Kluckner PD (1979) Digestion of environmental materials for analysis by inductively coupled plasma-atomic emission spectrometry. Analytical Chemistry 51, 1082–1084.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nelson P, Delane RJ (1990) ‘Producing lupins in Western Australia.’ Bulletin 4179. (Western Australian Department of Agriculture: Perth)

Northcote KH (1979) ‘A factual key for the recognition of Australian soils.’ 4th edn. (Rellim Technical Publications: Glenside, South Australia)

Pritchard I (1993) ‘Growing field peas.’ Bulletin 4329. (Western Australia Department of Agriculture: Perth)

Rayment GE, Higginson FR (1992) ‘Australian laboratory handbook of soil and water chemical methods.’ (Inkata Press: Melbourne)

Romer W, Kang DK, Egle K, Gerke J, Keller H (2000) The acquisition of cadmium by Lupinus albus L. and Lupinus angustifolius L. and Lolium multiflorum Lam. Zeitschrift fur Pflanzenernahrung und Bodenkunde 163, 623–628.
Crossref | GoogleScholarGoogle Scholar | open url image1

Siddique KHM, Loss SP, Regan KL, Jettner RJ (1999) Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Australian Journal of Agricultural Research 50, 375–387. open url image1

Siddique KHM, Sykes J (1997) Pulse production in Australia: past, present and future. Australian Journal of Experimental Agriculture 37, 103–111.
Crossref | GoogleScholarGoogle Scholar | open url image1

Siddique KHM, Walton G, Seymour M (1993) A comparison of seed yields of winter grain legumes in Western Australia. Australian Journal of Experimental Agriculture 33, 915–922.
Crossref | GoogleScholarGoogle Scholar | open url image1

Soil Survey Staff (1987) ‘Keys to soil taxonomy.’ SMSS Technical Monograph No. 6 (third printing). (Ithaca: New York)

Stace HCT, Hubble GD, Brewer R, Northcote KH, Sleemen JR, Mulcahy MJ, Hallsworth EG (1968) ‘A handbook of Australian soils.’ (Rellim Technical Publications: Glenside, South Australia)

Tang C, Longnecker NE, Robson AD (1993) Variation in the growth of lupin species and genotypes on alkaline soil. Plant and Soil 155–156, 513–516.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tang C, Longnecker NE, Thompson CJ, Greenway H, Robson AD (1992) Lupin (Lupinus angustifolius L.) and pea (Pisum sativum L.) roots differ in their sensitivity to pH above 6.0. Journal of Plant Physiology 140, 715–719. open url image1

Tang C, Robson AD, Longnecker NE, Buirchell BJ (1995) The growth of Lupinus species on alkaline soils. Australian Journal of Agricultural Research 46, 255–268.
Crossref | GoogleScholarGoogle Scholar | open url image1

Thomson BD, Siddique KHM, Barr MD, Wilson JM (1997) Grain legumes species in low rainfall Mediterranean–type environments. I. Phenology and seed yield. Field Crops Research 54, 173–187.
Crossref | GoogleScholarGoogle Scholar | open url image1

Walkley A, Black IA (1934) An examination of the Degtjarreff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37, 29–38. open url image1