Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Genetic diversity of eight millet genera assessed by using molecular and morphological markers

Zdislava Dvořáková A , Petra Hlásná Čepková A D , Iva Viehmannová A E , Lenka Havlíčková B C and Dagmar Janovská D
+ Author Affiliations
- Author Affiliations

A Czech University of Life Sciences Prague, Faculty of Tropical AgriSciences, Kamýcká 129, 165 21 Prague 6, Suchdol, Czech Republic.

B University of South Bohemia in České Budějovice, Faculty of Agriculture, Biotechnological Centre, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic.

C University of York, Centre for Novel Agricultural Products (CNAP), Heslington, York, YO10 5DD, UK.

D Crop Research Institute, Gene Bank, Drnovská 507, 161 06 Prague 6 Ruzyně, Czech Republic.

E Corresponding author. Email: viehmann@ftz.czu.cz

Crop and Pasture Science 67(2) 181-192 https://doi.org/10.1071/CP15202
Submitted: 19 June 2015  Accepted: 1 October 2015   Published: 29 February 2016

Abstract

In this study, the genetic diversity and relationships among eight millet genera were investigated by molecular and morphological data analyses. Sixty-nine millet accessions were analysed by using amplified fragment length polymorphism (AFLP) markers, and evaluated for morphological traits. Eight AFLP primer pairs were amplified successfully and 779 bands were scored for all accessions, with a high level of polymorphism detected. Nei’s genetic distance among all accessions varied from 0.0123 to 0.4246 and the Shannon’s index was estimated at 0.9708. The neighbour joining tree, using the unweighted neighbour-joining method and Dice’s dissimilarity coefficient, was constructed. The AFLP markers revealed the close relatedness between the Eragrostis and Panicum genera, whereas the greatest distance was found the Pennisetum and Echinochloa genera. Cluster analysis based on the AFLP profiles revealed that the majority of accessions of a given millet genus tend to group together. Clustering from morphological data allocated individuals into three main clusters with high variation. The genetic variability found between the analysed accessions was weakly negatively correlated (r = –0.074) with their morphological attributes. However, high molecular and morphological variability indicated that this collection includes rich and valuable plant materials for millet breeding.

Additional keywords: millet species, morphological traits, relatedness.


References

Adoukonou-Sagbadja H, Wagner C, Dansi A, Ahlemeyer J, Daïnou O, Akpagana K, Ordon F, Friedt W (2007) Genetic diversity and population differentiation of traditional fonio millet (Digitaria spp.) landraces from different agro-ecological zones of from West-Africa. Theoretical and Applied Genetics 115, 917–931.
Genetic diversity and population differentiation of traditional fonio millet (Digitaria spp.) landraces from different agro-ecological zones of from West-Africa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2sngtFOmuw%3D%3D&md5=e33c945ff9ed462bb060c15020f315ebCAS | 17726599PubMed |

Adoukonou-Sagbadja H, Wagner C, Ordon F, Friedt W (2010) Reproductive system and molecular phylogenetic relationships of fonio millets (Digitaria spp., Poaceae) with some polyploid wild relatives. Tropical Plant Biology 3, 240–251.
Reproductive system and molecular phylogenetic relationships of fonio millets (Digitaria spp., Poaceae) with some polyploid wild relatives.Crossref | GoogleScholarGoogle Scholar |

Aliscioni SS, Giussani LM, Zuloaga FO, Kellogg EA (2003) A molecular phylogeny of Panicum (Poaceae: Paniceae): tests of monophyly and phylogenetic placement within the Panicoideae. American Journal of Botany 90, 796–821.
A molecular phylogeny of Panicum (Poaceae: Paniceae): tests of monophyly and phylogenetic placement within the Panicoideae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslGjtLs%3D&md5=1911ec93513d1b482b8f9e77cec34843CAS | 21659176PubMed |

Althoff DM, Gitzendanner MA, Segraves KA (2007) The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Systematic Biology 56, 477–484.
The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVenurrF&md5=d45de0a3a6c268d0a2c3e0d296e1b499CAS | 17562471PubMed |

Andrews DJ, Kumar KA (2006) Pennisetum glaucum (L.) R. Br. In ‘Plant resources of tropical Africa 1. Cereals and pulses’. (Eds M Brink, G Belay) pp. 128–133. (PROTA Foundation: Wageningen, The Netherlands)

Armando LV, Carrera AD, Tomas MA (2013) Collection and morphological characterization of Panicum coloratum L. in Argentina. Genetic Resources and Crop Evolution 60, 1737–1747.
Collection and morphological characterization of Panicum coloratum L. in Argentina.Crossref | GoogleScholarGoogle Scholar |

Assefa K, Tefera H, Merker A, Kefyalew T, Hundera F (2001) Variability, heritability and genetic advance in pheno-morphic and agronomic traits of tef (Eragrostis tef (Zucc.) Trotter) germplasm from eight regions of Ethiopia. Hereditas 134, 103–113.
Variability, heritability and genetic advance in pheno-morphic and agronomic traits of tef (Eragrostis tef (Zucc.) Trotter) germplasm from eight regions of Ethiopia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mnos1Smug%3D%3D&md5=cb48765f5c92e4a2da93ef1a41bd967bCAS | 11732845PubMed |

Ayele M, Nguyen HT (2000) Evaluation of amplified fragment length polymorphism markers in tef, Eragrostis tef (Zucc.) Trotter, and related species. Plant Breeding 119, 403–409.
Evaluation of amplified fragment length polymorphism markers in tef, Eragrostis tef (Zucc.) Trotter, and related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotV2itbs%3D&md5=035150471b4afd7233615d430e150730CAS |

Ayele M, Tefera H, Assefa K, Nguyen HT (1999) Genetic characterization of two Eragrostis species using AFLP and morphological traits. Hereditas 130, 33–40.
Genetic characterization of two Eragrostis species using AFLP and morphological traits.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3ptlWlsw%3D%3D&md5=3c9c8acc9a1b3b2d617740750d737ac1CAS | 10364827PubMed |

Bai G, Tefera H, Ayele M, Nguyen HT (1999) A genetic linkage map of tef [Eragrostis tef (Zucc.) Trotter] based on amplified fragment length polymorphism. Theoretical and Applied Genetics 99, 599–604.
A genetic linkage map of tef [Eragrostis tef (Zucc.) Trotter] based on amplified fragment length polymorphism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsVKks7c%3D&md5=30d1e3312c427a1c607c2e2decf58b80CAS | 22665195PubMed |

Bala Ravi S (2004) Neglected millets that save the poor from starvation. LEISA, India 6, 34–36.

Belton PS, Taylor JRN (2004) Sorghum and millets: protein sources for Africa. Trends in Food Science & Technology 15, 94–98.
Sorghum and millets: protein sources for Africa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVemsw%3D%3D&md5=958e7e47522bc3977c88cbd8aca2f600CAS |

Bergamini N, Padulosi S, Ravi SB, Yenagi N (2013) Minor millets in India: A neglected crop goes mainstream. In ‘Diversifying food and diets: using agricultural biodiversity to improve nutrition and health’. (Eds J Fanzo, D Hunter, T Borelli, F Matei) pp. 313–325. (Earthscan: Routledge, UK)

Bisht MS, Mukai Y (2001) Genomic in situ hybridisation identifies genome donor of finger millet (Eleusine coracana). Theoretical and Applied Genetics 102, 825–832.
Genomic in situ hybridisation identifies genome donor of finger millet (Eleusine coracana).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1SktLY%3D&md5=476e81381e129c3be474638f6c2f92f7CAS |

Bisht MS, Mukai Y (2002) Genome organization and polyploid evolution in the genus Eleusine (Poaceae). Plant Systematics and Evolution 233, 243–258.
Genome organization and polyploid evolution in the genus Eleusine (Poaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFyqs7Y%3D&md5=5db062d32d76151177cda7e7b1a7b58bCAS |

Brink M, Belay G (2006) ‘Plant resources of tropical Africa 1. Cereals and pulses.’ (PROTA Foundation: Wageningen, The Netherlands; Backhuys Publishers: Leiden, The Netherlands; CTA: Wageningen, The Netherlands)

Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J (2010) Setaria viridis: a model for C4 photosynthesis. Plant & Cell Physiology 22, 2537–2544.
Setaria viridis: a model for C4 photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlegsb3M&md5=a5efe4a7413a3b0051687eb296da70a3CAS |

Dagnachew L, De Villiers S, Sewalem T, Dida M, Masresha F, Kimani W, Kassahun T (2014) Genetic diversity and eco-geographical distribution of Eleusine species collected from Ethiopia. African Crop Science Journal 22, 45–58.

Danquah EY, Johnson DE, Riches C, Arnold GM, Karp A (2002) Genetic diversity in Echinochloa spp. collected from different geographic origins and within rice fields in Cote d’lvoire. Weed Research 42, 394–405.
Genetic diversity in Echinochloa spp. collected from different geographic origins and within rice fields in Cote d’lvoire.Crossref | GoogleScholarGoogle Scholar |

Devos KM, Wang ZM, Beales J, Sasaki Y, Gale MD (1998) Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theoretical and Applied Genetics 96, 63–68.
Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlSksb0%3D&md5=f0ed32643d2a09f24b4c889259d83097CAS |

Dice LR (1945) Measures of amount of ecological association between species. Ecology 26, 297–302.
Measures of amount of ecological association between species.Crossref | GoogleScholarGoogle Scholar |

Donadío S, Giussani LM, Kellogg EA, Zuolaga FO, Morrone O (2009) A preliminary molecular phylogeny of Pennisetum and Cenchrus (Poaceae–Paniceae) based on the trnL-F, rpl16 chloroplast markers. Taxon 58, 392–404.

Doust AN, Penly AM, Jacobs SWL, Kellogg EA (2007) Congruence, conflict and polyploidization shown by nuclear and chloroplast markers in the monophyletic “bristle clade” (Paniceae, Panicoideae, Poaceae). Systematic Botany 32, 531–544.
Congruence, conflict and polyploidization shown by nuclear and chloroplast markers in the monophyletic “bristle clade” (Paniceae, Panicoideae, Poaceae).Crossref | GoogleScholarGoogle Scholar |

FAO and ICRISAT (1996) ‘The world sorghum and millet economies: facts, trends and outlook.’ (FAO: Rome)

Fukunaga K, Ichitani K, Taura S, Sato M, Kawase M (2005) Ribosomal DNA intergenic spacer sequence in foxtail millet, Setaria italica (L.) P. Beauv. and its characterization and application to typing of foxtail millet landraces. Hereditas 142, 38–44.
Ribosomal DNA intergenic spacer sequence in foxtail millet, Setaria italica (L.) P. Beauv. and its characterization and application to typing of foxtail millet landraces.Crossref | GoogleScholarGoogle Scholar | 16970610PubMed |

Garí JA (2002) Review of the African millet diversity. In ‘International Workshop on Fonio, Food Security and Livelihood among the Rural Poor in West Africa’. (Programme for Neglected and Underutilised Species International Plant Genetic Resources Institute: Rome) Available at: www.fao.org/fileadmin/templates/esw/esw_new/documents/Links/publications_other/6_millets.pdf (accessed 16 April 2015)

Gupta R, Verma K, Joshi DC, Yadav D, Singh M (2010) Assessment of genetic relatedness among three varieties of finger millet with variable seed coat colour using RAPD and ISSR markers. Journal of Genetic Engineering and Biotechnology 2010, GEBJ-2

Gupta S, Kumari K, Sahu PP, Vidapu S, Prasad M (2012) Sequence-based novel genomic microsatellite markers for robust genotyping purposes in foxtail millet [Setaria italica (L.) P. Beauv.]. Plant Cell Reports 31, 323–337.
Sequence-based novel genomic microsatellite markers for robust genotyping purposes in foxtail millet [Setaria italica (L.) P. Beauv.].Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFekuw%3D%3D&md5=5480aa7d3e71f6e373532046ec2f4080CAS | 21993813PubMed |

Gupta S, Kumari K, Arasan MM, Subramanian A, Prasad M (2013) Development and utilization of novel SSRs in foxtail millet [Setaria italica (L.) P. Beauv.]. Plant Breeding 132, 367–374.
Development and utilization of novel SSRs in foxtail millet [Setaria italica (L.) P. Beauv.].Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Chsb3L&md5=df5ac0d621ae1a18644919e608bdb249CAS |

Gutierrez-Ozuna R, Eguiarte LE, Molina-Freaner F (2009) Genotypic diversity among pasture and roadside populations of the invasive buffelgrass (Pennisetum ciliare L. Link) in north-western Mexico. Journal of Arid Environments 73, 26–32.
Genotypic diversity among pasture and roadside populations of the invasive buffelgrass (Pennisetum ciliare L. Link) in north-western Mexico.Crossref | GoogleScholarGoogle Scholar |

Hacker JB (1995) Tropical and subtropical grasses. In ‘Evolution of crop plants’. 2nd edn (Eds J Smartt, NW Simmonds) pp. 229–237. (Longman Group: London)

He Q, Li XW, Liang GL, Ji K, Guo QG, Yuan WM, Zhou GZ, Chen KS, van de Weg WE, Gao ZS (2011) Genetic diversity and identity of Chinese loquat cultivars/accessions (Eriobotrya japonica) using apple SSR markers. Plant Molecular Biology Reporter 29, 197–208.
Genetic diversity and identity of Chinese loquat cultivars/accessions (Eriobotrya japonica) using apple SSR markers.Crossref | GoogleScholarGoogle Scholar |

Hirano R, Naito K, Fukunaga K, Watanabe KN, Ohsawa R, Kawase M (2011) Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet. Genome 54, 498–506.
Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos1Khu78%3D&md5=d80d1453aa270022f930ca66b090a764CAS | 21623678PubMed |

Hiremath SC, Salimath SS (1992) The ‘A’ genome donor of Eleusine coracana (L.) Gaertn. (Gramineae). Theoretical and Applied Genetics 84, 747–754.
The ‘A’ genome donor of Eleusine coracana (L.) Gaertn. (Gramineae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c7jvFaltA%3D%3D&md5=5594988554a3bb4aa80d7c7a99f28849CAS | 24201369PubMed |

Hodkinson TR, Chase MW, Renvoize SA (2002) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae). Annals of Botany 89, 627–636.
Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVGktrw%3D&md5=6234ff69aeb3c50fd9d65a6777fd4d1fCAS | 12099538PubMed |

Hutcheson K (1970) A test for comparing diversities based on the Shannon formula. Journal of Theoretical Biology 29, 151–154.
A test for comparing diversities based on the Shannon formula.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3M%2FotVKjtQ%3D%3D&md5=0271582d4faf4aa6e9e8326d4712ce7eCAS | 5493290PubMed |

IBPGR (1983) ‘Echinochloa millet descriptors.’ (International Board for Plant Genetic Resources: Rome)

IBPGR (1985a) ‘Descriptors for finger millet.’ (International Board for Plant Genetic Resources: Rome)

IBPGR (1985b) ‘Descriptors for Panicum miliaceum and P. sumatrense.’ (International Board for Plant Genetic Resources: Rome)

IBPGR and ICRISAT (1984) ‘Descriptors for pearl millet [Pennisetum glaucum (L.) R. Br.].’ (International Board for Plant Genetic Resources: Rom; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India)

Jia G, Shi S, Wang Ch, Niu Z, Chai Y, Zhi H, Diao X (2013) Molecular diversity and population structure of Chinese green foxtail [Setaria viridis (L.) Beauv.] revealed by microsatellite analysis. Journal of Experimental Botany 64, 3645–3656.
Molecular diversity and population structure of Chinese green foxtail [Setaria viridis (L.) Beauv.] revealed by microsatellite analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yrsrrN&md5=eb502e4b386bffef244bc02e7584c842CAS | 23956411PubMed |

Kawase M, Fukunaga K, Kato K (2005) Diverse origins of waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions. Molecular Genetics and Genomics 274, 131–140.
Diverse origins of waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFChsLnI&md5=c14b2b574115db33c6ec7ce87272d4a5CAS | 16133169PubMed |

Kaya HB, Demirci M, Tanyolac B (2014) Genetic structure and diversity analysis revealed by AFLP on different Echinochloa spp. from northwest Turkey. Plant Systematics and Evolution 300, 1337–1347.
Genetic structure and diversity analysis revealed by AFLP on different Echinochloa spp. from northwest Turkey.Crossref | GoogleScholarGoogle Scholar |

Killeen TJ, Deagrasar ZER (1992) Taxonomy and reproductive biology of Digitaria dioica and D. neesiana (Gramineae, Paniceae). Systematic Botany 17, 594–606.
Taxonomy and reproductive biology of Digitaria dioica and D. neesiana (Gramineae, Paniceae).Crossref | GoogleScholarGoogle Scholar |

Kim S, Kim CS, Lee J, Lee IY, Chung YJ, Cho MS, Kim SC (2014) Phylogenetic relationships among species of Setaria (Paniceae; Panicoideae; Poaceae) in Korea: insights from nuclear (ITS and kn1) and chloroplast DNA sequence data. Plant Systematics and Evolution 301, 725–736.

Kong Q, Li X, Xiang C, Wang H, Song J, Zhi H (2011) Genetic diversity of radish (Raphanus sativus L.) germplasm resources revealed by AFLP and RAPD markers. Plant Molecular Biology Reporter 29, 217–223.
Genetic diversity of radish (Raphanus sativus L.) germplasm resources revealed by AFLP and RAPD markers.Crossref | GoogleScholarGoogle Scholar |

Le Thierry d’Ennequin M, Panaud O, Toupance B, Sarr A (2000) Assessment of genetic relationships between Setaria italica and its wild relative S. viridis using AFLP markers. Theoretical and Applied Genetics 100, 1061–1066.
Assessment of genetic relationships between Setaria italica and its wild relative S. viridis using AFLP markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1ais7w%3D&md5=80f3a7ecea3da49a3ae711dfae2cb409CAS |

Li P, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. Journal of Experimental Botany 62, 3031–3037.
Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFWjtbg%3D&md5=3d309779d41b6373246fb4f4dd832aa9CAS | 21459768PubMed |

Li W, Zhi H, Wang YF, Li HQ, Diao XM (2012) Assessment of genetic relationship of foxtail millet with its wild ancestor and close relatives by ISSR markers. Journal of Integrative Agriculture 11, 556–566.
Assessment of genetic relationship of foxtail millet with its wild ancestor and close relatives by ISSR markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFGlsrg%3D&md5=1f897741548515d6afa633414db9ff44CAS |

Ma KH, Kim KH, Dixit A, Chung IM, Gwag JG, Kim TS, Park IJ (2010) Assessment of genetic diversity and relationships among Coix lacryma jobi accessions using microsatellite markers. Biologia Plantarum 54, 272–278.
Assessment of genetic diversity and relationships among Coix lacryma jobi accessions using microsatellite markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslakurw%3D&md5=48c5ca064420c4389674a176b25e9cb3CAS |

Mal B, Padulosi S, Bala Ravi S (2010) ‘Minor millets in South Asia: Learnings from IFAD-NUS Project in India and Nepal.’ (Bioversity International, Maccarese: Rome; M. S. Swaminathan Research Foundation: Chennai, India)

Mallikharjun DR, Hiremath SC, Rao SR, Kumar A, Sheelavanthmath SS (2005) Genome interrelationship in the genus Eleusine (Poaceae) as revealed through heteroploid crosses. Caryologia 58, 300–307.
Genome interrelationship in the genus Eleusine (Poaceae) as revealed through heteroploid crosses.Crossref | GoogleScholarGoogle Scholar |

Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209–220.

Martel E, Poncet V, Lamy F, Siljak-Yakolev S, Lejune B, Sarr A (2004) Chromosome evolution of Pennisetum species (Poaceae): implications of ITS phylogeny. Plant Systematics and Evolution 249, 139–149.
Chromosome evolution of Pennisetum species (Poaceae): implications of ITS phylogeny.Crossref | GoogleScholarGoogle Scholar |

Martins S, Simões F, Matos J, Silva AP, Carnide V (2014) Genetic relationship among wild, landraces and cultivars of hazelnut (Corylus avellana) from Portugal revealed through ISSR and AFLP markers. Plant Systematics and Evolution 300, 1035–1046.
Genetic relationship among wild, landraces and cultivars of hazelnut (Corylus avellana) from Portugal revealed through ISSR and AFLP markers.Crossref | GoogleScholarGoogle Scholar |

McKevith B (2004) Nutritional aspects of cereals. Nutrition Bulletin 29, 111–142.
Nutritional aspects of cereals.Crossref | GoogleScholarGoogle Scholar |

Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends in Ecology & Evolution 14, 389–394.
AFLP genotyping and fingerprinting.Crossref | GoogleScholarGoogle Scholar |

Nei M (1972) Genetic distance between populations. American Naturalist 106, 283–292.
Genetic distance between populations.Crossref | GoogleScholarGoogle Scholar |

Nei M, Takezaki N (1983) Estimation of genetic distances and phylogenetic trees from DNA analysis. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production 21, 405–412.

Neves SS (2011) Eleusine. In ‘Wild crop relatives: genomic and breeding resources, millets and grasses’. (Ed. C Kole) (Springer-Verlag: Berlin, Heidelberg)

Neves SS, Swire-Clark G, Hilu KW, Baird WV (2005) Phylogeny of Eleusine (Poaceae: Chloridoideae) based on nuclear ITS and plastid trnTtrnF sequences. Molecular Phylogenetics and Evolution 35, 395–419.
Phylogeny of Eleusine (Poaceae: Chloridoideae) based on nuclear ITS and plastid trnTtrnF sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1ajur0%3D&md5=435e5dd929a08e66339fbaa6c9233674CAS | 15804411PubMed |

Oelke EA, Oplinger ES, Putnam DH, Durman BR, Doll JD, Undersander DJ (1990) Millets. In ‘Alternative field crops manual’. (Purdue University: West Lafayette, IN, USA) Available at: www.hort.purdue.edu/newcrop/afcm/millet.html (accessed 10 March 2015)

Padulosi S, Mal B, Bala Ravi S, Godwa J, Godwa KTK, Shanthakumar G, Yenagi N, Dutta M (2009) Food security and climate change: role of plant genetic resources of minor millets. Indian Journal of Plant Genetic Resources 22, 1–16.

Perrier X, Jacquemoud-Collet JP (2006) DARwin software. CIRAD, Paris. Available at: http://darwin.cirad.fr/darwin

Qin F, Li J, Li X, Corke H (2005) AFLP and RFLP linkage map in Coix. Genetic Resources and Crop Evolution 52, 209–214.
AFLP and RFLP linkage map in Coix.Crossref | GoogleScholarGoogle Scholar |

Ramezani H (2012) A note on the normalized definition of Shannon’s diversity index in landscape pattern analysis. Environment and Natural Resources Research 2, 54–60.
A note on the normalized definition of Shannon’s diversity index in landscape pattern analysis.Crossref | GoogleScholarGoogle Scholar |

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.

Salimath SS, De Oliveira AC, Godwin ID, Bennetzen JL (1995) Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers. Genome 38, 757–763.
Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFeruro%3D&md5=c947815e4c416a5648ecc3099998ce4dCAS | 7672607PubMed |

Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Molecular Ecology Notes 6, 569–572.
Analysis of multilocus fingerprinting data sets containing missing data.Crossref | GoogleScholarGoogle Scholar |

Sharma R, Deshpande SP, Senthilvel S, Rao VP, Rajaram V, Hash CT, Thakur RP (2010) SSR allelic diversity in relation to morphological traits and resistance to grain mould in sorghum. Crop & Pasture Science 61, 230–240.
SSR allelic diversity in relation to morphological traits and resistance to grain mould in sorghum.Crossref | GoogleScholarGoogle Scholar |

Singh P (2008) History of millet cultivation in India. In ‘History of agriculture in India, up to c. 1200 AD’. (Eds L Gopal, VC Srivastava) pp. 107–119. (Concept Publishing Company: New Delhi)

Somasundaram ST, Kalaiselvam M (2011) Molecular tools for assessing genetic diversity. In ‘International Training Course on Mangroves and Biodiversity’. Annamalai University, Tamil Nadu, India. Available at: http://dev.unu-mc.org/international-network-on-water-environment-and-health/unu-inweh-course-1-mangroves/Molecular_Tools__for_Assessing_Genetic_Diversity.pdf (accessed 12 March 2015)

Tabacchi M, Mantegazza R, Spada A, Ferrero A (2006) Morphologicaltraits and molecular markers for classification of Echinochloa species from Italian rice fields. Weed Science 54, 1086–1093.
Morphologicaltraits and molecular markers for classification of Echinochloa species from Italian rice fields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSitrnP&md5=9ad13a40d7b1f195b0d0d67af11b06c9CAS |

Tefera H, Belay G (2006) Eragrostis tef (Zuccagni) Trotter. In ‘Plant resources of tropical Africa 1. Cereals and pulses’. (Eds M Brink, G Belay) pp. 68–72. (PROTA Foundation: Wageningen, Netherlands; Backhuys Publishers, Leiden, The Netherlands; CTA: Wageningen, The Netherlands)

Tsehay S (2012) Genetic diversity and relationships among cultivated and wild Eleusine species collected from Ethiopia as revealed by ISSR Marker. MSc Thesis, Addis Ababa University, Ethiopia.

Vieira EA, de Carvalho FIF, Bertan I, Koop MM, Zimmer PD, Benin G, da Silva JAG, Hartwig I, Malone G, de Oliveira AC (2007) Association between genetic distances in wheat (Triticum aestivum L.) as estimated by AFLP and morphological markers. Genetics and Molecular Biology 30, 392–399.
Association between genetic distances in wheat (Triticum aestivum L.) as estimated by AFLP and morphological markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFGis7g%3D&md5=39b8f7d9516377b04c1f7a8f4f594923CAS |

Vodouhè SR, Achigan Dako EG (2006) Digitaria exilis (Kippist) Stapf. In ‘Plant resources of tropical Africa 1. Cereals and pulses’. (Eds M Brink, G Belay) pp. 54–58. (PROTA Foundation, Wageningen, Netherlands; Backhuys Publishers, Leiden, Netherlands; CTA: Wageningen, The Netherlands)

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 4407–4414.
AFLP: a new technique for DNA fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslensbo%3D&md5=6c4a63a632713a4cee23d817f48c48d9CAS | 7501463PubMed |

Wang ZM, Devos KM, Liu CJ, Wang RQ, Gale MD (1998) Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theoretical and Applied Genetics 96, 31–36.
Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlSksLc%3D&md5=fb07ac63589807af953a314ffbdacac7CAS |

Watson L, Dallwitz MJ (1992) The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and reference. DELTA, Institute of Botany, Chinese Academy of Sciences. Available at: http://delta-intkey.com/grass/ (accessed 21 April 2015)

Wipff JK, Hatch SL (1994) A systematic study of Digitaria sect. Pennatae (Poaceae: Paniceae) in the New World. Systematic Botany 19, 613–627.
A systematic study of Digitaria sect. Pennatae (Poaceae: Paniceae) in the New World.Crossref | GoogleScholarGoogle Scholar |

Zamani Z, Zarei A, Fatahi R (2010) Characterization of Progenies Derived from Pollination of Pomegranate cv. Malase-Tourshe-Saveh Using Fruit Traits and RAPD Molecular Marker. Scientia Horticulturae 124, 67–73.
Characterization of Progenies Derived from Pollination of Pomegranate cv. Malase-Tourshe-Saveh Using Fruit Traits and RAPD Molecular Marker.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2htb4%3D&md5=a21f6037e51c533b706c513846dc7b81CAS |