A uniform gene and chromosome nomenclature system for oat (Avena spp.)
Eric N. Jellen A * , Charlene P. Wight B , Manuel Spannagl C , Victoria C. Blake D E , James Chong F , Matthias H. Herrmann G , Catherine J. Howarth H , Yung-Fen Huang I , Jia Juqing J , Andreas Katsiotis K , Tim Langdon H , Chengdao Li L , Robert Park M , Nicholas A. Tinker B and Taner Z. Sen D NA
B
C
D
E
F
G
H
I
J
K
L
M
N
Abstract
Several high-quality reference genomes for oat (Avena sativa L. and relatives) have been published, with the prospect of many additional whole-genome assemblies emerging in the near future.
This has necessitated an effort by the International Oat Nomenclature Committee (IONC; all co-authors on this paper) to devise a universal system for naming oat genomes and subgenomes, chromosomes, genes, gene models and quantitative trait loci.
We evaluated existing naming practices, recent data from oat whole-genome sequencing, and the newly published convention for wheat nomenclature.
A framework for these rules has been posted on the GrainGenes database website (https://wheat.pw.usda.gov/GG3/oatnomenclature). The gene naming convention requires adoption of a numerical identifier for each genotype; we propose that these identifiers be assigned by contacting the GrainGenes curators, the curator of the Oat Newsletter, or a member of the IONC (as listed at the GrainGenes link above).
We encourage oat researchers to refer to these resources, policies, procedures and conventions, adopting them as an international nomenclature standard.
Adoption of these standards will facilitate communication and dissemination of oat research and allow programmatic access and data sharing across platforms, and will contribute to oat breeding and research worldwide.
Keywords: Avena, chromosome nomenclature, data standardisation, gene nomenclature, genome nomenclature, oat, plant breeding, QTL nomenclature.
References
Badaeva ED, Shelukhina OY, Diederichsen A, Loskutov IG, Pukhalskiy VA (2010) Comparative cytogenetic analysis of Avena macrostachya and diploid C-genome Avena species. Genome 53, 125-137.
| Crossref | Google Scholar |
Bekele WA, Wight CP, Chao S, Howarth CJ, Tinker NA (2018) Haplotype-Based genotyping-by-sequencing in oat genome research. Plant Biotechnology Journal 16, 1452-1463.
| Crossref | Google Scholar |
Boden SA, McIntosh RA, Uauy C, Krattinger SG, Dubcovsky J, Rogers WJ, Xia XC, Badaeva ED, Bentley AR, Brown-Guedira G, Caccamo M, Cattivelli L, Chhuneja P, Cockram J, Contreras-Moreira B, Dreisigacker S, Edwards D, Gonzalez FG, Guzman C, Ikeda TM, Karsai I, Nasuda S, Pozniak C, Prins R, Sen TZ, Silva P, Simkova H, Zhang Y, the Wheat Initiative (2023) Updated guidelines for gene nomenclature in wheat. Theoretical and Applied Genetics 136, 72.
| Crossref | Google Scholar | PubMed |
Chaffin AS, Huang Y-F, Smith S, Bekele WA, Babiker E, Gnanesh BN, Foresman BJ, Blanchard SG, Jay JJ, Reid RW, Wight CP, Chao S, Oliver R, Islamovic E, Kolb FL, McCartney C, Mitchell Fetch JW, Beattie AD, Bjornstad A, Bonman JM, Langdon T, Howarth CJ, Brouwer CR, Jellen EN, Klos KE, Poland JA, Hsieh T-F, Brown R, Jackson E, Schlueter JA, Tinker NA (2016) A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial subgenome rearrangement. The Plant Genome 9, plantgenome2015.10.0102.
| Crossref | Google Scholar |
Dutta B, Gitaitis R, Agarwal G, Coutinho T, Langston D (2018) Pseudomonas coronafaciens sp. nov., a new phytobacterial species diverse from Pseudomonas syringae. PLoS ONE 13, e0208271.
| Crossref | Google Scholar | PubMed |
Hsam SLK, Mohler V, Zeller FJ (2014) The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes. Journal of Applied Genetics 55, 155-162.
| Crossref | Google Scholar | PubMed |
Jiang W, Jiang C, Yuan W, Zhang M, Fang Z, Li Y, Li G, Jia J, Yang Z (2021) A universal karyotypic system for hexaploid and diploid Avena species brings oat cytogenetics into the genomics era. BMC Plant Biology 21, 213.
| Crossref | Google Scholar | PubMed |
Kamal N, Renhuldt NT, Bentzer J, Gundlach H, Haberer G, Juhasz A, Lux T, Bose U, Tye-Din JA, Lang D, van Gessel N, Reski R, Fu Y-B, Spegel P, Ceplitis A, Himmelbach A, Waters AJ, Bekele WA, Colgrave ML, Hansson M, Stein N, Mayer KFX, Jellen EN, Maughan PJ, Tinker NA, Mascher M, Olsson O, Spannagl M, Sirijovski N (2022) The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature 606, 113-119.
| Crossref | Google Scholar | PubMed |
Kim YC (2020) First report of oat halo blight caused by Pseudomonas coronafaciens in South Korea. Plant Disease 104, 1853.
| Crossref | Google Scholar |
Latta RG, Bekele WA, Wight CP, Tinker NA (2019) Comparative linkage mapping of diploid, tetraploid, and hexaploid Avena species suggests extensive chromosome rearrangement in ancestral diploids. Scientific Reports 9, 12298.
| Crossref | Google Scholar | PubMed |
Leggett JM (2011) Further hybrids involving the perennial autotetraploid oat Avena macrostachya. Genome 35, 273-275.
| Crossref | Google Scholar |
Maughan PJ, Lee R, Walstead R, Vickerstaff RJ, Fogarty MC, Brouwer CR, Reid RR, Jay JJ, Bekele WA, Jackson EW, Tinker NA, Langdon T, Schlueter JA, Jellen EN (2019) Genomic insights from the first chromosome-scale assemblies of oat (Avena spp.) diploid species. BMC Biology 17, 92.
| Crossref | Google Scholar | PubMed |
Park RF, Boshoff WHP, Cabral AL, Chong J, Martinelli JA, McMullen MS, Fetch JWM, Paczos-Grzeda E, Prats E, Roake J, Sowa S, Ziems L, Singh D (2022) Breeding oat for resistance to the crown rust pathogen Puccinia coronata f. sp. avenae: achievements and prospects. Theoretical and Applied Genetics 135, 3709-3734.
| Crossref | Google Scholar |
Peng Y, Yan H, Guo L, Deng C, Wang C, Wang Y, Kang L, Zhou P, Yu K, Dong X, Liu X, Sun Z, Peng Y, Zhao J, Deng D, Xu Y, Li Y, Jiang Q, Li Y, Wei L, Wang J, Ma J, Hao M, Li W, Kang H, Peng Z, Liu D, Jia J, Zheng Y, Ma T, Wei Y, Lu F, Ren C (2022) Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nature Genetics 54, 1248-1258.
| Crossref | Google Scholar | PubMed |
Radchenko EE, Kuznetsova TL, Chumakov MA, Loskutov IG (2018) Greenbug (Schizaphis graminum) resistance in oat (Avena spp.) landraces from Asia. Genetic Resources and Crop Evolution 65, 571-576.
| Crossref | Google Scholar |
Rajhathy T (1963) A standard karyotype for Avena sativa. Canadian Journal of Genetics and Cytology 5, 127-132.
| Crossref | Google Scholar |
Sanz MJ, Jellen EN, Loarce Y, Irigoyen ML, Ferrer E, Fominaya A (2010) A new chromosome nomenclature system for oat (Avena sativa L. and A. byzantina C. Koch) based on FISH analysis of monosomic lines. Theoretical and Applied Genetics 121, 1541-1552.
| Crossref | Google Scholar | PubMed |
Schnable JC (2020) Genes and gene models, an important distinction. New Phytologist 228, 50-55.
| Crossref | Google Scholar | PubMed |
Singh RJ, Tsuchiya T (1982) Identification and designation of telocentric chromosomes in barley by means of Giemsa N-banding technique. Theoretical and Applied Genetics 64, 13-24.
| Crossref | Google Scholar | PubMed |
Wang RR-C, von Bothmer R, Dvorak J, Fedak G, Linde-Laursen I, Muramatsu M (1996) Genome symbols in the Triticeae (Poaceae). In ‘Proceedings of the 2nd International Triticeae Symposium’. Logan, Utah, 1994. (Eds RR-C Wang, KB Jensen, C Jaussi) pp. 29–34. (Utah State University, Herbarium Publications: Logan, UT, USA)
Yan H, Bekele WA, Wight CP, Peng Y, Langdon T, Latta RG, Fu Y-B, Diederichsen A, Howarth CJ, Jellen EN, Boyle B, Wei Y, Tinker NA (2016) High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat. Theoretical and Applied Genetics 129, 2133-2149.
| Crossref | Google Scholar | PubMed |
Yao E, Blake VC, Cooper L, Wight CP, Michel S, Cagirici HB, Lazo GR, Birkett CL, Waring DJ, Jannink J-L, Holmes I, Waters AJ, Eickholt DP, Sen TZ (2022) GrainGenes: a data-rich repository for small grains genetics and genomics. Database 2022, baac034.
| Crossref | Google Scholar |