Genotype-dependent responses of Andean and Coastal quinoa to plant population density for yield and its physiological determinants in Northwest Argentina
Juan José Agüero A * , Martín Moisés Acreche B , Silvia Susana Sühring C , Héctor Daniel Bertero D and Ramiro Néstor Curti EA Agencia de Extensión Hornillos, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional 9, km 1763, Jujuy 4622, Argentina.
B Estación Experimental Agropecuaria Salta, Instituto Nacional de Tecnología Agropecuaria (INTA)-CONICET, Ruta Nacional 68, km 172, Salta 4403, Argentina.
C Cátedra de Estadística y Diseño Experimental, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta 4400, Argentina.
D Cátedra de Producción Vegetal e Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA)-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires C1417DSE, Argentina.
E Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales y Sede Regional Sur, Universidad Nacional de Salta-CONICET, Salta 4400, Argentina.
Abstract
In quinoa, similar yields are found under a wide range of plant population densities due to its phenotypic plasticity.
This study aimed to identify optimal plant population densities for achieving attainable yields, in relation to the most adapted genotype for a given environment.
Andean (RQ252 and RQ420) and Coastal (Titicaca and Puno) genotypes were tested at conventional (14 plants/m2) and low (7 plants/m2) plant population densities, in Dry Valley and Highland mega-environments for 2 years.
More than 64% of total variation was explained by genotype, location, and interaction effects for grain yield, biomass, and harvest index. For these variables, the genotype × location × plant population density term presented the highest percentage of variation among triple and quadruple interaction terms. In the Highlands, grain yields decreased with plant population density for Andean genotypes (30–40%), in contrast to lower reductions for Coastal genotypes (9–20%). In the Dry Valleys, no effect of plant population density was found for all genotypes. In the Highlands, reductions in biomass and harvest index explained grain yield response, in parallel with increases in small grain percentage of up to 16% when frosts came early, related to uneven maturity at low plant population density.
Attainable yields in Northwest Argentina were achieved by exploring local adaptation and response to plant population density of Andean genotypes in the Highlands, in contrast to stable yields of Coastal genotypes through locations and plant population densities.
Understanding genotype-dependent responses to plant population density according to Northwest Argentina mega-environments can reduce yield gaps in quinoa production and refine breeding strategies.
Keywords: Andean and Coastal quinoa, biomass, genotype by location by plant population density interaction, genotype-dependent response, harvest index, local adaptation, Northwest Argentina, yield stability.
References
Adolf VI, Shabala S, Andersen MN, Razzaghi F, Jacobsen S-E (2012) Varietal differences of quinoa’s tolerance to saline conditions. Plant and Soil 357, 117-129.
| Crossref | Google Scholar |
Aguilar PC, Jacobsen S-E (2003) Cultivation of quinoa on the Peruvian altiplano. Food Reviews International 19, 31-41.
| Crossref | Google Scholar |
Al Jbawi E, Othman M, Al Hunnish T, Abbas F (2022) The effect of plant density on growth and seed yield of quinoa (Chenopodium quinoa Willd.) in the middle region of Syria. International Journal of Phytology Research 2, 19-24.
| Google Scholar |
Asher A, Dagan R, Galili S, Rubinovich L (2022) Effect of row spacing on quinoa (Chenopodium quinoa) growth, yield, and grain quality under a mediterranean climate. Agriculture 12, 1298.
| Crossref | Google Scholar |
Atlin GN, Cooper M, Bjørnstad Å (2001) A comparison of formal and participatory breeding approaches using selection theory. Euphytica 122, 463-475.
| Crossref | Google Scholar |
Basford KE, Cooper M (1998) Genotype × environment interactions and some considerations of their implications for wheat breeding in Australia. Australian Journal of Agricultural Research 49, 153-174.
| Crossref | Google Scholar |
Bazile D, Pulvento C, Verniau A, Al-Nusairi MS, Ba D, Breidy J, Hassan L, Mohammed MI, Mambetov O, Otambekova M, Sepahvand NA, Shams A, Souici D, Miri K, Padulosi S (2016) Worldwide evaluations of quinoa: preliminary results from post international year of quinoa FAO projects in nine countries. Frontiers in Plant Science 7, 850.
| Crossref | Google Scholar |
Bertero HD, de la Vega AJ, Correa G, Jacobsen SE, Mujica A (2004) Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Research 89, 299-318.
| Crossref | Google Scholar |
Çiftçi S, Zulkadir G, Gökçe MS, Karaburu E, Bozdağ E, Idikut L (2020) The effect of row distances on quinoa yield and yield components in the late planting period. International Journal of Research Publication and Reviews 1, 37-42.
| Google Scholar |
Cooper M, Voss-Fels KP, Messina CD, Tang T, Hammer GL (2021) Tackling G × E × M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by predicting contributions of genetics and management to crop productivity. Theoretical and Applied Genetics 134, 1625-1644.
| Crossref | Google Scholar |
Costa Tártara SM, Manifesto MM, Curti RN, Bertero HD (2015) Origen, prácticas de cultivo, usos y diversidad genética de la quinua del Noroeste Argentino (NOA) en el contexto del conocimiento actual del germoplasma de América del Sur. In ‘Racionalidades campesinas en los Andes del Sur: Reflexiones en torno al cultivo de la quinua y otros vegetales andinos’. (Eds P Cruz, R Joffre, T Winkel) pp. 199–230. (Universidad Nacional de Jujuy)
Curti RN, Andrade AJ, Bramardi S, Velásquez B, Daniel Bertero H (2012) Ecogeographic structure of phenotypic diversity in cultivated populations of quinoa from Northwest Argentina. Annals of Applied Biology 160, 114-125.
| Crossref | Google Scholar |
Curti RN, de la Vega AJ, Andrade AJ, Bramardi SJ, Bertero HD (2014) Multi-environmental evaluation for grain yield and its physiological determinants of quinoa genotypes across Northwest Argentina. Field Crops Research 166, 46-57.
| Crossref | Google Scholar |
Curti RN, de la Vega AJ, Andrade AJ, Bramardi SJ, Bertero HD (2016) Adaptive responses of quinoa to diverse agro-ecological environments along an altitudinal gradient in North West Argentina. Field Crops Research 189, 10-18.
| Crossref | Google Scholar |
Dao A, Alvar-Beltrán J, Gnanda A, Guira A, Nebie L, Sanou J (2020) Effect of different planting techniques and sowing density rates on the development of quinoa. African Journal of Agricultural Research 16, 1325-1333.
| Crossref | Google Scholar |
de la Vega AJ, Chapman SC, Hall AJ (2001) Genotype by environment interaction and indirect selection for yield in sunflower: I. Two-mode pattern analysis of oil and biomass yield across environments in Argentina. Field Crops Research 72, 17-38.
| Crossref | Google Scholar |
Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2018) InfoStat Versión 2018. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available at http://www.infostat.com.ar
Eisa SS, Abd El-Samad E, Hussin S, Ali E, Ebrahim M, González JA, Ordano M, Erazzú LE, El-Bordeny N, Abdel-Ati A (2018) Quinoa in Egypt – plant density effects on seed yield and nutritional quality in marginal regions. Sciences 8, 515-522.
| Google Scholar |
Erazzú LE, González JA, Buedo SE, Prado FE (2016) Efectos de la densidad de siembra sobre Chenopodium quinoa (quinoa). Incidencia sobre variables morfológicas y rendimiento de grano en la variedad CICA cultivada en Amaicha del Valle (Tucumán, Argentina). Lilloa 53, 12-22.
| Google Scholar |
Gambin BL, Coyos T, Di Mauro G, Borrás L, Garibaldi LA (2016) Exploring genotype, management, and environmental variables influencing grain yield of late-sown maize in central Argentina. Agricultural Systems 146, 11-19.
| Crossref | Google Scholar |
González JA, Mercado MI, Martinez-Calsina L, Erazzú LE, Buedo SE, González DA, Ponessa GI (2022) Plant density effects on quinoa yield, leaf anatomy, ultrastructure and gas exchange. The Journal of Agricultural Science 160, 349-359.
| Crossref | Google Scholar |
Hatfield JL, Walthall CL (2015) Meeting global food needs: realizing the potential via genetics × environment × management interactions. Agronomy Journal 107, 1215-1226.
| Crossref | Google Scholar |
He D, Wang E, Wang J, Lilley JM (2017) Genotype × environment × management interactions of canola across China: a simulation study. Agricultural and Forest Meteorology 247, 424-433.
| Crossref | Google Scholar |
Jacobsen S-E (1998) Developmental stability of quinoa under European conditions. Industrial Crops and Products 7, 169-174.
| Crossref | Google Scholar |
Jacobsen S-E, Jørgensen I, Stølen O (1994) Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark. The Journal of Agricultural Science 122, 47-52.
| Crossref | Google Scholar |
Jacobsen S-E, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International 19, 99-109.
| Crossref | Google Scholar |
Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, Rupper RR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EGWM, Guo X, Momin AA, Negrão S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold ST, Gojobori T, Linden CGvd, van Loo EN, Jellen EN, Maughan PJ, Tester M (2017) The genome of Chenopodium quinoa. Nature 542, 307-312.
| Crossref | Google Scholar |
Kaloki P, Trethowan R, Tan DKY (2019) Effect of genotype × environment × management interactions on chickpea phenotypic stability. Crop & Pasture Science 70, 453-462.
| Crossref | Google Scholar |
Mercer K, Martínez-Vásquez Á, Perales HR (2008) Asymmetrical local adaptation of maize landraces along an altitudinal gradient. Evolutionary Applications 1, 489-500.
| Crossref | Google Scholar |
Paderewski J, Gauch HG, Jr, Madry W, Gacek E (2016) AMMI analysis of four-way genotype × location × management × year data from a wheat trial in Poland. Crop Science 56, 2157-2164.
| Crossref | Google Scholar |
Patiranage DSR, Rey E, Emrani N, Wellman G, Schmid K, Schmöckel SM, Tester M, Jung C (2020) Genome-wide association study in the pseudocereal quinoa reveals selection pattern typical for crops with a short breeding history. bioRxiv 2020.12.03.410050.
| Crossref | Google Scholar |
Rabbani B, Karimi G, Khoramivafa M, Saeidi M, Boroomandan P, Bagheri M, Zarei L (2022) Effect of sowing date and plant density on seed yield and yield attributes of quinoa (Chenopodium quinoa) genotypes. Iran Agricultural Research 40, 121-133.
| Google Scholar |
Risi J, Galwey NW (1991) Effects of sowing date and sowing rate on plant development and grain yield of quinoa (Chenopodium quinoa) in a temperate environment. The Journal of Agricultural Science 117, 325-332.
| Crossref | Google Scholar |
Rotili DH, Sadras VO, Abeledo LG, Ferreyra JM, Micheloud JR, Duarte G, Girón P, Ermácora M, Maddonni GÁ (2021) Impacts of vegetative and reproductive plasticity associated with tillering in maize crops in low-yielding environments: a physiological framework. Field Crops Research 265, 108107.
| Crossref | Google Scholar |
Seyoum S, Rachaputi R, Fekybelu S, Chauhan Y, Prasanna B (2019) Exploiting genotype x environment x management interactions to enhance maize productivity in Ethiopia. European Journal of Agronomy 103, 165-174.
| Crossref | Google Scholar |
Sief AS, El-Deepah HRA, Kamel ASM, Ibrahim JF (2015) Effect of various inter and intra spaces on the yield and quality of quinoa (Chenopodium quinoa willd.). Journal of Plant Production 6, 371-383.
| Crossref | Google Scholar |
Stanschewski CS, Rey E, Fiene G, Craine EB, Wellman G, Melino VJ, Patiranage DSR, Johansen K, Schmöckel SM, Bertero D, Oakey H, Colque-Little C, Afzal I, Raubach S, Miller N, Streich J, Amby DB, Emrani N, Warmington M, Mousa MAA, Wu D, Jacobson D, Andreasen C, Jung C, Murphy K, Bazile D, Tester M (2021) Quinoa phenotyping methodologies: an international consensus. Plants 10, 1759.
| Crossref | Google Scholar |
Tapley M, Ortiz BV, van Santen E, Balkcom KS, Mask P, Weaver DB (2013) Location, seeding date, and variety interactions on winter wheat yield in Southeastern United States. Agronomy Journal 105, 509-518.
| Crossref | Google Scholar |
Van Minh N, Hoang DT, Van Loc N, Long NV (2020) Effects of plant density on growth, yield and seed quality of quinoa genotypes under rain-fed conditions on red basalt soil regions. Australian Journal of Crop Science 14, 1977-1982.
| Crossref | Google Scholar |
Wang N, Wang F, Shock CC, Meng C, Qiao L (2020) Effects of management practices on quinoa growth, seed yield, and quality. Agronomy 10, 445.
| Crossref | Google Scholar |
Wilson HD (1990) Quinua and relatives (Chenopodium sect.Chenopodium subsect.Celluloid). Economic Botany 44, 92-110.
| Crossref | Google Scholar |