Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
REVIEW

Phenotypic, genotypic and nutritional divergence in cowpea and implications for drought tolerance breeding: a review

Bogaleng Milcah Masemola https://orcid.org/0000-0002-8423-4503 A B , Abe Shegro Gerrano https://orcid.org/0000-0001-7472-8246 B C D , Maryke Labuschagne https://orcid.org/0000-0003-0593-2678 A , Adre Minnaar-Ontong A and Ntombokulunga W. Mbuma https://orcid.org/0000-0003-1566-7580 A B *
+ Author Affiliations
- Author Affiliations

A Department of Plant Sciences, Plant Breeding, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.

B Department of Plant Breeding, Agricultural Research Council, Vegetable, Industrial and Medicinal Plants Institute, Private Bag X293, Pretoria 0001, South Africa.

C Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.

D Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA.

* Correspondence to: MbumaN@arc.agric.za

Handling Editor: Rajeev Varshney

Crop & Pasture Science 74(12) 1105-1115 https://doi.org/10.1071/CP22295
Submitted: 30 August 2022  Accepted: 3 May 2023  Published: 26 May 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Genetic diversity is crucial for crop improvement in any breeding program. Cowpea is an important indigenous grain vegetable legume crop. The crop has a significant potential to improve food and nutritional security in sub-Saharan Africa (SSA), and family income for resource poor famers. Cowpea is a source of proteins, vitamins (folate, thiamine and vitamin C), minerals (Fe, Zn, Mn and Ca) and amino acids such as lysine and tryptophan, hence, has a high potential for combating nutrient deficiencies. The SSA countries, including South Africa, have been experiencing many dry seasons, which have negatively affected agricultural production and productivity. Cowpea has a long taproot with the ability to grow in arid and semi-arid regions; however, lasting exposure to severe droughts will result in significant yield and grain quality reduction. There has been limited progress in drought tolerance research in cowpea due to the complexity of this trait, as it involves numerous genes, which in turn are affected by environmental conditions. It is therefore important to review research done on the nutritional, phenotypic and genotypic diversity of cowpea and the importance of diversity when breeding for complex quantitative traits such as drought tolerance and yield. The review will also outline the important omics tools used for drought tolerance breeding, cultivar development and as reference for future cowpea breeding.

Keywords: breeding, cowpea, crop improvement, drought, genetic diversity, legume, nutritional diversity, quantitative.

References

Abdul Fiyaz R, Ajay BC, Ramya KT, Aravind Kumar J, Sundaram RM, Subba Rao LV (2020) Speed breeding: methods and applications. In ‘Accelerated plant breeding. Vol. 1’. (Eds S Gosal, S Wani) pp. 31–49. (Springer: Cham, Switzerland) doi:10.1007/978-3-030-41866-3_2

Agbicodo EM, Fatokun CA, Muranaka S, Visser RG, Linden van der CG (2009) Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica 167, 353-370.
| Crossref | Google Scholar |

Alabi O (1994) Epidemiology of cowpea brown blotch induced by Colletotrichum capsici and assessment of crop losses due to the disease. Doctoral dissertation, Ahmadu Bello University, Zaria, Nigeria.

Angira B, Zhang Y, Zhang Y, Scheuring CF, Masor L, Coleman J, Singh BB, Zhang H-B, Hays DB, Zhang M, Khanal M, Correa E, Bhatta BP, Malla S (2022) Genetic dissection of iron deficiency chlorosis by QTL analysis in cowpea. Euphytica 218, 38.
| Crossref | Google Scholar |

Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science 19, 52-61.
| Crossref | Google Scholar |

Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu J-K, Liu R (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biology 11, 127.
| Crossref | Google Scholar |

Batieno BJ, Tignegre JB, Hamadou S, Hamadou Z, Ouedraogo JT, Danquah E, Ofori K (2016) Field assessment of cowpea genotypes for drought tolerance. International Journal of Sciences: Basic and Applied Research 30, 358-369.
| Google Scholar |

Batieno TBJ, Souleymane O, Tignegre J, Huynh BL, Kusi F, Poda SL, Close TJ, Roberts P, Danquah E, Ofori K, Ouedraogo TJ (2018) Single nucleotide polymorphism (SNP)-based genetic diversity in a set of Burkina Faso cowpea germplasm. African Journal of Agricultural Research 13, 978-987.
| Crossref | Google Scholar |

Belko N, Zaman-Allah M, Cisse N, Diop NN, Zombre G, Ehlers JD, Vadez V (2012) Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea. Functional Plant Biology 39, 306-322.
| Crossref | Google Scholar |

Bhadkaria A, Gupta N, Narvekar DT, Bhadkariya R, Saral A, Srivastava N, Koul KK, Bhagyawant SS (2020) ISSR-PCR approach as a means of studying genetic variation in moth bean (Vigna aconitifolia (Jacq.) Maréchal). Biocatalysis and Agricultural Biotechnology 30, 101827.
| Crossref | Google Scholar |

Bodner G, Nakhforoosh A, Kaul H-P (2015) Management of crop water under drought: a review. Agronomy for Sustainable Development 35, 401-442.
| Crossref | Google Scholar |

Boukar O, Massawe F, Muranaka S, Franco J, Maziya-Dixon B, Singh B, Fatokun C (2011) Evaluation of cowpea germplasm lines for protein and mineral concentrations in grains. Plant Genetic Resources 9, 515-522.
| Crossref | Google Scholar |

Boukar O, Fatokun CA, Roberts PA, Abberton M, Huynh BL, Close TJ, Kyei-Boahen S, Higgins TJV, Ehlers JD (2015) Cowpea. In ‘Grain legumes. Vol. 10’. (Ed. A De Ron) pp. 219–250. (Springer: New York, USA) https://doi.org/10.1007/978-1-4939-2797-5_7

Boukar O, Belko N, Chamarthi S, Togola A, Batieno J, Owusu E, Haruna M, Diallo S, Umar ML, Olufajo O, Fatokun C (2019) Cowpea (Vigna unguiculata): genetics, genomics and breeding. Plant Breeding 138, 415-424.
| Crossref | Google Scholar |

Boukar O, Abberton M, Oyatomi O, Togola A, Tripathi L, Fatokun C (2020) Introgression breeding in cowpea [Vigna unguiculata (L.) Walp.]. Frontiers in Plant Science 11, 567425.
| Crossref | Google Scholar |

Bueno PCP, Lopes NP (2020) Metabolomics to characterize adaptive and signaling responses in legume crops under abiotic stresses. ACS Omega 5, 1752-1763.
| Crossref | Google Scholar |

Campbell RF, McGrath PT, Paaby AB (2018) Analysis of epistasis in natural traits using model organisms. Trends in Genetics 34, 883-898.
| Crossref | Google Scholar |

Carvalho M, Lino-Neto T, Rosa E, Carnide V (2017) Cowpea: a legume crop for a challenging environment. Journal of the Science of Food and Agriculture 97, 4273-4284.
| Crossref | Google Scholar |

Carvalho M, Matos M, Castro I, Monteiro E, Rosa E, Lino-Neto T, Carnide V (2019) Screening of worldwide cowpea collection to drought tolerant at a germination stage. Scientia Horticulturae 247, 107-115.
| Crossref | Google Scholar |

Cui Q, Xiong H, Yufeng Y, Eaton S, Imamura S, Santamaria J, Ravelombola W, Mason RE, Wood L, Mozzoni LA, Shi A (2020) Evaluation of drought tolerance in Arkansas cowpea lines at seedling stage. Horticultural Science 55, 1132-1143.
| Crossref | Google Scholar |

Damiri BV, Al-Shahwan IM, Al-Saleh MA, Abdalla OA, Amer MA (2013) Identification and characterization of cowpea aphid-borne mosaic virus isolates in Saudi Arabia. Journal of Plant Pathology 95(1), 79-85.
| Google Scholar |

Diouf D (2011) Recent advances in cowpea [Vigna unguiculata (L.) Walp.] “omics” research for genetic improvement. African Journal of Biotechnology 10, 2803-2810.
| Crossref | Google Scholar |

Dhaliwal SK, Talukdar A, Gautam A, Sharma P, Sharma V, Kaushik P (2020) Developments and prospects in imperative underexploited vegetable legumes breeding: a review. International Journal of Molecular Sciences 21, 9615.
| Crossref | Google Scholar |

Edet OU, Ishii T (2022) Cowpea speed breeding using regulated growth chamber conditions and seeds of oven-dried immature pods potentially accommodates eight generations per year. Plant Methods 18, 106.
| Crossref | Google Scholar |

El-Hashash EF, El-Absy KM (2019) Barley (Hordeum vulgare L.) breeding. In ‘Advances in plant breeding strategies: cereals. Vol. 1’. (Eds J Al-Khayri, S Jain, D Johnson) pp. 1–45. (Springer Nature: Cham, Switzerland) doi:10.1007/978-3-030-23108-8_1

Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences 72, 673-689.
| Crossref | Google Scholar |

Fang J, Chao C-CT, Roberts PA, Ehlers JD (2007) Genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] in four West African and USA breeding programs as determined by AFLP analysis. Genetic Resources and Crop Evolution 54, 1197-1209.
| Crossref | Google Scholar |

FAOSTAT (2020) Statistics of cowpea production. Available at https://www.fao.org/faostat/en/#data/QCL [Accessed on 30 September 2021]

Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants: an overview. In ‘Plant responses to drought stress. Vol. 1’. (Ed. R Aroca) pp. 1–33. (Springer: Berlin, Heidelberg, Germany) doi:10.1007/978-3-642-32653-0_1

Fatokun CA, Boukar O, Muranaka S (2012) Evaluation of cowpea (Vigna unguiculata (L.) Walp.) germplasm lines for tolerance to drought. Plant Genetic Resources 10, 171-176.
| Crossref | Google Scholar |

Ferreira-Neto JRC, Borges ANC, da Silva MD, Morais DAL, Bezerra-Neto JP, Bourque G, Kido EA, Benko-Iseppon AM (2021) The cowpea kinome: genomic and transcriptomic analysis under biotic and abiotic stresses. Frontiers in Plant Science 12, 667013.
| Crossref | Google Scholar |

Gbaguidi AA, Dansi A, Loko LY, Dansi M, Sanni A (2013) Diversity and agronomic performances of the cowpea (Vigna unguiculata Walp.) landraces in Southern Benin. International Research Journal of Agricultural Science and Soil Science 3, 121-133.
| Google Scholar |

Gbedevi KM, Boukar O, Ishikawa H, Abe A, Ongom PO, Unachukwu N, Rabbi I, Fatokun C (2021) Genetic diversity and population structure of cowpea [Vigna unguiculata (L.) Walp.] germplasm collected from Togo based on DArT markers. Genes 12, 1451.
| Crossref | Google Scholar |

Gerrano AS, Adebola PO, Jansen van Rensburg WS, Laurie SM (2015) Genetic variability in cowpea (Vigna unguiculata (L.) Walp.) genotypes. South African Journal of Plant and Soil 32, 165-174.
| Crossref | Google Scholar |

Gerrano AS, van Rensburg WSJ, Adebola PO (2017) Nutritional composition of immature pods in selected cowpea [Vigna unguiculata (L.) Walp.] genotypes in South Africa. Australian Journal of Crop Science 11, 134-141.
| Crossref | Google Scholar |

Gerrano AS, Jansen van Rensburg WS, Venter SL, Shargie NG, Amelework BA, Shimelis HA, Labuschagne MT (2019) Selection of cowpea genotypes based on grain mineral and total protein content. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science 69, 155-166.
| Crossref | Google Scholar |

Gerrano AS, Jansen van Rensburg WS, Mathew I, Shayanowako AIT, Bairu MW, Venter SL, Swart W, Mofokeng A, Mellem J, Labuschagne M (2020) Genotype and genotype × environment interaction effects on the grain yield performance of cowpea genotypes in dryland farming system in South Africa. Euphytica 216, 80.
| Crossref | Google Scholar |

Gerrano AS, Lubinga MH, Bairu MW (2022) Genetic resources management, seed production constraints and trade performance of orphan crops in Southern Africa: a case of Cowpea. South African Journal of Botany 146, 340-347.
| Crossref | Google Scholar |

Gomes AMF, Nhantumbo N, Ferreira-Pinto M, Massinga R, Ramalho JC, Ribeiro-Barros A (2019) Breeding elite cowpea [Vigna unguiculata (L.) Walp.] varieties for improved food security and income in Africa: opportunities and challenges. In ‘Legume crops – characterization and breeding for improved food security’. (Ed. MA El-Esawi) pp. 626–640. (IntechOpen: London, UK). doi:10.5772/intechopen.84985

Gomes AMF, Draper D, Nhantumbo N, Massinga R, Ramalho JC, Marques I, Ribeiro-Barros AI (2021) Diversity of cowpea [Vigna unguiculata (L.) Walp.] landraces in Mozambique: new opportunities for crop improvement and future breeding programs. Agronomy 11, 991.
| Crossref | Google Scholar |

Gonçalves A, Goufo P, Barros A, Domínguez-Perles R, Trindade H, Rosa EAS, Ferreira L, Rodrigues M (2016) Cowpea (Vigna unguiculata L. Walp.), a renewed multipurpose crop for a more sustainable agri-food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture 96, 2941-2951.
| Crossref | Google Scholar |

Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR, Rosa EAS, António C, Trindade H (2017) Cowpea (Vigna unguiculata L Walp.) metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. Frontiers in Plant Science 8, 586.
| Crossref | Google Scholar |

Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International 2015, 431487.
| Crossref | Google Scholar |

Gupta P, Singh R, Malhotra S, Boora KS, Singal HR (2010) Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L.) Walp.]. Physiology and Molecular Biology of Plants 16, 53-58.
| Crossref | Google Scholar |

Haegeman A, Mantelin S, Jones JT, Gheysen G (2012) Functional roles of effectors of plant-parasitic nematodes. Gene 492, 19-31.
| Crossref | Google Scholar |

Hall AE (2012) Phenotyping cowpeas for adaptation to drought. Frontiers in Physiology 3, 155.
| Crossref | Google Scholar |

Hayatu M, Muhammad SY, Abdu HU (2014) Effect of water stress on the leaf relative water content and yield of some cowpea (Vigna unguiculata (L.) Walp.) genotype. International Journal of Scientific & Technology Research 3, 148-152.
| Google Scholar |

Hema M, Sreenivasulu P, Patil BL, Kumar PL, Reddy DVR (2014) Tropical food legumes: virus diseases of economic importance and their control. In ‘Advances in virus research. Vol. 90’. (Eds G Loebenstein, N Katis) pp. 431–505. (Academic Press: London, UK) doi:10.1016/B978-0-12-801246-8.00009-3

Honaiser TC, Rossi GB, de Moura Rocha M, Arisi ACM (2022) Comparison of grain protein profiles of Brazilian cowpea (Vigna unguiculata) cultivars based on principal component analysis. Food Production, Processing and Nutrition 4, 16.
| Crossref | Google Scholar |

Honnur RB, Yadahalli KB, Jahagirdar S (2016) Identification of susceptible stage for rust in cowpea. Biochemical and Cellular Archives 16, 141-143.
| Google Scholar |

Horn LN, Shimelis H (2020) Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in Sub-Saharan Africa. Annals of Agricultural Sciences 65, 83-91.
| Crossref | Google Scholar |

Horn L, Shimelis H, Laing M (2015) Participatory appraisal of production constraints, preferred traits and farming system of cowpea in the northern Namibia: implications for breeding. Legume Research – An International Journal 38, 691-700.
| Google Scholar |

Huynh B-L, Close TJ, Roberts PA, Hu Z, Wanamaker S, Lucas MR, Chiulele R, Cissé N, David A, Hearne S, Fatokun C, Diop NN, Ehlers JD (2013) Gene pools and the genetic architecture of domesticated cowpea. The Plant Genome 6(3),.
| Crossref | Google Scholar |

Huynh B-L, Ehlers JD, Huang BE, Muñoz-Amatriaín M, Lonardi S, Santos JRP, Ndeve A, Batieno BJ, Boukar O, Cisse N, Drabo I, Fatokun C, Kusi F, Agyare RY, Guo Y-N, Herniter I, Lo S, Wanamaker SI, Xu S, Close TJ, Roberts PA (2018) A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). The Plant Journal 93, 1129-1142.
| Crossref | Google Scholar |

Igwe DO, Afiukwa CA, Ubi BE, Ogbu KI, Ojuederie OB, Ude GN (2017) Assessment of genetic diversity in Vigna unguiculata L. (Walp) accessions using inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) polymorphic markers. BMC Genetics 18, 98.
| Crossref | Google Scholar |

Iseghohi IO, Adesoye AI, Oludare DA, Agunbiade FV, Unachukwu N (2019) Assessment of genetic diversity of selected cowpea landraces from Nigeria based on simple sequence repeat markers. Nigerian Journal of Biotechnology 36, 33-44.
| Crossref | Google Scholar |

Iseki K, Takahashi Y, Muto C, Naito K, Tomooka N (2018) Diversity of drought tolerance in the genus Vigna. Frontiers in Plant Science 9, 729.
| Crossref | Google Scholar |

Jayathilake C, Visvanathan R, Deen A, Bangamuwage R, Jayawardana BC, Nammi S, Liyanage R (2018) Cowpea: an overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture 98, 4793-4806.
| Crossref | Google Scholar |

Jha UC, Bohra A, Nayyar H (2020) Advances in “omics” approaches to tackle drought stress in grain legumes. Plant Breeding 139, 1-27.
| Crossref | Google Scholar |

Kabambe VH, Tembo YLB, Kazira E (2013) Awareness of the parasitic weed Alectra vogelii (Benth.) amongst extension officers in three districts in Malawi. American Journal of Experimental Agriculture 3, 432-442.
| Crossref | Google Scholar |

Kebede E, Bekeko Z, Tejada Moral M (2020) Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture 6, 1769805.
| Crossref | Google Scholar |

Khan MA, Qayyum A, Noor E (2007) Assessment of wheat genotypes for salinity tolerance. In ‘Proceedings of the 8th African Crop Science Conference, El-Minia, Egypt, October 27–31 2007’. pp. 75–78. (African Crop Science Society)

Khan A, Sovero V, Gemenet D (2016) Genome-assisted breeding for drought resistance. Current Genomics 17, 330-342.
| Crossref | Google Scholar |

Kongjaimun A, Kaga A, Tomooka N, Somta P, Vaughan DA, Srinives P (2012a) The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis. Annals of Botany 109, 1185-1200.
| Crossref | Google Scholar |

Kongjaimun A, Kaga A, Tomooka N, Somta P, Shimizu T, Shu Y, Isemura T, Vaughan DA, Srinives P (2012b) An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis Group) and QTL analysis of pod length. Genome 55, 81-92.
| Crossref | Google Scholar |

Kumar J, Sen Gupta D, Djalovic I, Kumar S, Siddique KHM (2021) Root-omics for drought tolerance in cool-season grain legumes. Physiologia Plantarum 172, 629-644.
| Crossref | Google Scholar |

Kumar P, Choudhary M, Halder T, Prakash NR, Singh V, Vineeth TV, Sheoran S, Ravikiran KT, Longmei N, Rakshit S, Siddique KHM (2022) Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops. Heredity 128, 497-518.
| Crossref | Google Scholar |

Labuschagne MT, Verhoeven R, Nkouanessi M (2008) Drought tolerance assessment of African cowpea accessions based on stomatal behaviour and cell membrane stability. The Journal of Agricultural Science 146, 689-694.
| Crossref | Google Scholar |

Liang Q, Munoz-Amatriain M, Shu S, Lo S, Wu X, Carlson JW, Davidson P, Goodstein DM, Phillips J, Janis NM, Lee EJ, Liang C, Morrell PL, Farmer AD, Xu P, Close TJ, Lonardi S (2023) A view of the pan-genome of domesticated cowpea (Vigna unguiculata [L.] Walp.). Plant Genome 22, e20319.
| Crossref | Google Scholar |

Lima EN, Silva MLdD, de Abreu CEB, Mesquita RO, Lobo MDP, Monteiro-Moreira ACdO, Gomes-Filho E, Bertini CHCdM (2019) Differential proteomics in contrasting cowpea genotypes submitted to different water regimes. Genetics and Molecular Research 18, gmr18396.
| Crossref | Google Scholar |

Lo S, Muñoz-Amatriaín M, Boukar O, Herniter I, Cisse N, Guo Y-N, Xu S, Fatokun C, Close TJ (2018) Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Scientific Reports 8, 6261.
| Crossref | Google Scholar |

Lo S, Muñoz-Amatriaín M, Hokin SA, Cisse N, Roberts PA, Farmer AD, Xu S, Close TJ (2019) A genome-wide association and meta-analysis reveal regions associated with seed size in cowpea [Vigna unguiculata (L.) Walp]. Theoretical and Applied Genetics 132, 3079-3087.
| Crossref | Google Scholar |

Lonardi S, Muñoz-Amatriaín M, Liang Q, Shu S, Wanamaker SI, Lo S, Tanskanen J, Schulman AH, Zhu T, Luo M-C, Alhakami H, Ounit R, Hasan AM, Verdier J, Roberts PA, Santos JRP, Ndeve A, Doležel J, Vrána J, Hokin SA, Farmer AD, Cannon SB, Close TJ (2019) The genome of cowpea (Vigna unguiculata [L.] Walp.). The Plant Journal 98, 767-782.
| Crossref | Google Scholar |

Mafakheri K, Bihamta MR, Abbasi AR (2017) Assessment of genetic diversity in cowpea (Vigna unguiculata L.) germplasm using morphological and molecular characterisation. Cogent Food & Agriculture 3, 1327092.
| Crossref | Google Scholar |

Mashilo J (2013) Response of dual-purpose cowpea landraces to water stress. Doctoral dissertation, University of Kwa-Zulu Natal, Pietermaritzburg, South Africa.

Matos AR, d’Arcy-Lameta A, França M, Pêtres S, Edelman L, Kader J-C, Zuily-Fodil Y, Pham-Thi AT (2001) A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS Letters 491, 188-192.
| Crossref | Google Scholar |

Mbeyagala EK, Mukasa BS, Tukamuhabwa P, Bisikwa J (2014) Evaluation of cowpea genotypes for virus resistance under natural conditions in Uganda. Journal of Agricultural Science (Toronto) 6, 176-187.
| Crossref | Google Scholar |

Mbuma NW, Gerrano AS, Lebaka N, Mofokeng A, Labuschagne M (2021) The evaluation of a southern African cowpea germplasm collection for seed yield and yield components. Crop Science 61, 466-489.
| Crossref | Google Scholar |

Mofokeng MA, Gerrano AS (2021) Efforts in breeding cowpea for aphid resistance: a review. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science 71, 489-497.
| Crossref | Google Scholar |

Mofokeng MA, Mashingaidze K (2019) Breeding and genetic management of drought in cowpea: progress and technologies. Australian Journal of Crop Science 13, 1920-1926.
| Crossref | Google Scholar |

Muchero W, Ehlers JD, Close TJ, Roberts PA (2009) Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theoretical and Applied Genetics 118, 849-863.
| Crossref | Google Scholar |

Muchero W, Ehlers JD, Roberts PA (2010) Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.]. Theoretical and Applied Genetics 120, 509-518.
| Crossref | Google Scholar |

Muchero W, Roberts PA, Diop NN, Drabo I, Cisse N, Close TJ, Muranaka S, Boukar O, Ehlers JD (2013) Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PLoS ONE 8, e70041.
| Crossref | Google Scholar |

Nkhoma N, Shimelis H, Laing MD, Shayanowako A, Mathew I (2020) Assessing the genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] germplasm collections using phenotypic traits and SNP markers. BMC Genetics 21, 110.
| Crossref | Google Scholar |

Nkoana KD, Gerrano AS, Gwata ET (2019) Evaluation of diverse cowpea [Vigna unguiculata (L.) Walp.] germplasm accessions for drought tolerance. Legume Research – An International Journal 42, 168-172.
| Crossref | Google Scholar |

Nkomo GV, Sedibe M, Mofokeng MA, Pierneef R (2020) Association mapping for drought tolerance and yield-related traits in cowpea accessions. Preprints 2020, 2020100001.
| Crossref | Google Scholar |

Nkomo GV, Sedibe MM, Mofokeng MA (2021) Production constraints and improvement strategies of cowpea (Vigna unguiculata L. Walp.) genotypes for drought tolerance. International Journal of Agronomy 2021, 5536417.
| Crossref | Google Scholar |

Noubissietchiagam JB, Bell JM, Guissai Birwe S, Gonne S, Youmbi E (2010) Varietal response of cowpea (Vigna unguiculata (L.) Walp.) to Striga gesnerioides (Willd.) Vatke race SG5 infestation. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38, 33-41.
| Google Scholar |

Nwosu DJ, Nwadike C (2021) Cross-compatibility of cultivated cowpea varieties and their wild relatives: implications for crop improvement. Journal of Agriculture and Food Sciences 19, 110-119.
| Crossref | Google Scholar |

Oliveira RS, Carvalho P, Marques G, Ferreira L, Pereira S, Nunes M, Rocha I, Ma Y, Carvalho MF, Vosátka M, Freitas H (2017) Improved grain yield of cowpea (Vigna unguiculata) under water deficit after inoculation with Bradyrhizobium elkanii and Rhizophagus irregularis. Crop and Pasture Science 68, 1052-1059.
| Crossref | Google Scholar |

Omoigui LO, Arrey MO, Kamara AY, Danmaigona CC, Ekeruo G, Timko MP (2019) Inheritance of resistance to Cercospora leaf spot disease of cowpea [Vigna unguiculata (L.) Walp]. Euphytica 215, 101.
| Crossref | Google Scholar |

Pan L, Wang N, Wu Z, Guo R, Yu X, Zheng Y, Xia Q, Gui S, Chen C (2017) A high-density genetic map derived from RAD sequencing and its application in QTL analysis of yield-related traits in Vigna unguiculata. Frontiers in Plant Science 8, 1544.
| Crossref | Google Scholar |

Paudel D, Dareus R, Rosenwald J, Muñoz-Amatriaín M, Rios EF (2021) Genome-wide association study reveals candidate genes for flowering time in cowpea (Vigna unguiculata [L.] Walp.). Frontiers in Genetics 12, 667038.
| Crossref | Google Scholar |

Phiri CK, Kabambe VH, Bokosi J, Mumba P (2018) Screening for resistance mechanisms in cowpea genotypes on Alectra vogelii. American Journal Plant Sciences 9, 1362-1379.
| Crossref | Google Scholar |

Pottorff M, Ehlers JD, Fatokun C, Roberts PA, Close TJ (2012) Leaf morphology in cowpea [Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species. BMC Genomics 13, 234.
| Crossref | Google Scholar |

Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plants. Proceedings of the National Academy of Sciences 104, 19631-19636.
| Crossref | Google Scholar |

Santos JRP, Ndeve AD, Huynh B-L, Matthews WC, Roberts PA (2018) QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance. PLoS ONE 13, e0189185.
| Crossref | Google Scholar |

Shimelis H, Gwata ET, Laing MD (2019) Crop improvement for agricultural transformation in Southern Africa. In ‘Transforming agriculture in Southern Africa. Vol. 1’. (Eds RA Sikora, ER Terry, PLG Vlek, J Chitja) pp. 97–103. (Routledge: London, UK) doi:10.4324/9780429401701

Siise A, Massawe FJ (2013) Microsatellites based marker molecular analysis of Ghanaian bambara groundnut (Vigna subterranea (L.) Verdc.) landraces alongside morphological characterization. Genetic Resources and Crop Evolution 60, 777-787.
| Crossref | Google Scholar |

Singh SK, Raja Reddy K (2011) Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. Journal of Photochemistry and Photobiology B: Biology 105, 40-50.
| Crossref | Google Scholar |

Sodedji FAK, Agbahoungba S, Agoyi EE, Kafoutchoni MK, Choi J, Nguetta SPA, Assogbadjo AE, Kim H-Y (2021) Diversity, population structure, and linkage disequilibrium among cowpea accessions. The Plant Genome 14, e20113.
| Crossref | Google Scholar |

Tchiagam J-BN, Bell JM, Nassourou AM, Njintang NY, Youmbi E (2011) Genetic analysis of seed proteins contents in cowpea (Vigna unguiculata L. Walp.). African Journal of Biotechnology 10, 3077-3086.
| Crossref | Google Scholar |

Toscano S, Farieri E, Ferrante A, Romano D (2016) Physiological and biochemical responses in two ornamental shrubs to drought stress. Frontiers in Plant Science 7, 645.
| Crossref | Google Scholar |

Tosti N, Negri V (2002) Efficiency of three PCR-based markers in assessing genetic variation among cowpea (Vigna unguiculata subsp. unguiculata) landraces. Genome 45, 268-275.
| Crossref | Google Scholar |

Viswanatha KP, Pallavi MS, Khan PH (2011) Sources of resistance to cowpea (Vigna unguiculata L.) bacterial leaf blight disease. In ‘Plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture. Proceedings of the 2nd Asian PGPR Conference Beijing, China, 21–24 August 2011’. pp. 465–472. (Asian PGPR Society: Telangana, India)

Wanga MA, Shimelis H, Mashilo J, Laing MD (2021) Opportunities and challenges of speed breeding: a review. Plant Breeding 140, 185-194.
| Crossref | Google Scholar |

Woudenberg JHC, Groenewald JZ, Binder M, Crous PW (2013) Alternaria redefined. Studies in Mycology 75, 171-212.
| Crossref | Google Scholar |

Xu P, Wu X, Wang B, Hu T, Lu Z, Liu Y, et al. (2013) QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits. BMC Genetics 14, 4.
| Crossref | Google Scholar |