Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Effect of different genotypes of Tithonia diversifolia on fermentation of feed mixtures with Urochloa brizantha cv. Marandú

Julian Rivera https://orcid.org/0000-0002-1207-1485 A E , Julian Chará B , Jacobo Arango C and Rolando Barahona D
+ Author Affiliations
- Author Affiliations

A Centro Para la Investigación en Sistemas Sostenibles de Producción Agropecuaria (CIPAV), Carrera 25 # 6—62, 760002. Cali, Colombia.

B Centro Para la Investigación en Sistemas Sostenibles de Producción Agropecuaria (CIPAV).

C Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia.

D Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín, Colombia.

E Corresponding autor. Email: jerivera@fun.cipav.org.co

Crop and Pasture Science 72(10) 850-859 https://doi.org/10.1071/CP21102
Submitted: 8 February 2021  Accepted: 15 April 2021   Published: 10 August 2021

Abstract

Tithonia diversifolia (Mexican sunflower) is a shrub used for animal feed that has outstanding agronomic and chemical characteristics. Its potential to modify the dynamics of fermentation and improve the supply of nutrients to ruminants has received considerable attention. This study was designed to determine the effect of different genotypes of T. diversifolia on ruminal fermentation and degradation of dry matter (DM), concentration of volatile fatty acids, and production of methane (CH4) when mixed with a low-quality tropical grass, Urochloa brizantha (palisade grass). In a randomised complete block design, mixtures of seven genotypes of T. diversifolia with U. brizantha cv. Marandú were evaluated by using the in vitro gas production technique. The effect of fertilisation was also evaluated for each genotype. Inclusion of T. diversifolia significantly (P < 0.05) increased the supply of nutrients and modified fermentation parameters. DM degradation of biomass after 72 h was greater in the presence of T. diversifolia than for feeds based only on U. brizantha (68.0% vs 63.4%; P < 0.01). CH4 production was lower (P < 0.05) during fermentation with some T. diversifolia genotypes (25.3 vs 27.7 mg CH4 g–1 incubated DM), and the acetic:propionic acid ratio was also lower. Fertilisation of T. diversifolia genotypes increased DM degradation, increased the content of certain nutrients (e.g. crude protein) and modified CH4 production. Therefore, inclusion of T. diversifolia in mixtures based on low-quality tropical grasses such as U. brizantha increases the supply of nutrients (crude protein, minerals, energy) and can modify the products of enteric fermentation, with some genotypes decreasing enteric CH4 emissions.

Keywords: chemical composition, methane emission, Mexican sunflower, ruminal fermentation, volatile fatty acids.


References

Ariza-Nieto C, Mayorga O, Mojica B, Parra D, Afanador-Tellez G (2018) Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. Journal of Near Infrared Spectroscopy 26, 44–52.
Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia.Crossref | GoogleScholarGoogle Scholar |

Banik BK, Durmic Z, Erskine W, Ghamkhar K, Revell C (2013) In vitro ruminal fermentation characteristics and methane production differ in selected key pasture species in Australia. Crop & Pasture Science 64, 935–942.
In vitro ruminal fermentation characteristics and methane production differ in selected key pasture species in Australia.Crossref | GoogleScholarGoogle Scholar |

Barahona R, Sánchez S (2005) Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. Ciencia y Tecnología Agropecuaria 6, 69–82.
Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla.Crossref | GoogleScholarGoogle Scholar |

Barahona R, Lascano CE, Narvaez N, Owen E, Morris P, Theodorou MK (2003) In vitro degradability of mature and immature leaves of tropical forage legumes differing in condensed tannin and non‐starch polysaccharide content and composition. Journal of the Science of Food and Agriculture 83, 1256–1266.
In vitro degradability of mature and immature leaves of tropical forage legumes differing in condensed tannin and non‐starch polysaccharide content and composition.Crossref | GoogleScholarGoogle Scholar |

Barahona R, Sánchez S, Lascano CE, Owen E, Morris P, Theodorou MK (2006) Effect of condensed tannins from tropical legumes on the activity of fibrolytic enzymes from the rumen fungus Neocallimastyx hurleyensis. Enzyme and Microbial Technology 39, 281–288.
Effect of condensed tannins from tropical legumes on the activity of fibrolytic enzymes from the rumen fungus Neocallimastyx hurleyensis.Crossref | GoogleScholarGoogle Scholar |

Bhatta R, Saravanan M, Baruah L, Sampath KT, Prasad CS (2013) Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population. Journal of Applied Microbiology 115, 455–465.
Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population.Crossref | GoogleScholarGoogle Scholar | 23621853PubMed |

Blaxter KL, Clapperton JL (1965) Prediction of amount of methane produced by ruminants. British Journal of Nutrition 19, 511–522.
Prediction of amount of methane produced by ruminants.Crossref | GoogleScholarGoogle Scholar |

Botero-Londoño J, Gómez A, Botero M (2019) Rendimiento, parámetros agronómicos y calidad nutricional de la Tithonia diversifolia con base en diferentes niveles de fertilización. Revista Mexicana de Ciencias Pecuarias 10, 789–800.
Rendimiento, parámetros agronómicos y calidad nutricional de la Tithonia diversifolia con base en diferentes niveles de fertilización.Crossref | GoogleScholarGoogle Scholar |

Brooks A, Theodorou MK (1997) ‘Manual for gas production technique.’ (Institute of Grassland and Environmental Research (IGER): Aberystwyth, UK)

Chagas-Paula DA, Oliveira RB, Rocha BA, Da Costa FB (2012) Ethnobotany, chemistry, and biological activities of the genus Tithonia (Asteraceae). Chemistry & Biodiversity 9, 201–235.
Ethnobotany, chemistry, and biological activities of the genus Tithonia (Asteraceae).Crossref | GoogleScholarGoogle Scholar |

Cuartas CA, Narnajo JF, Tarazona AM, Correa GA, Barahona R (2015) Dry matter and nutrient intake and diet composition in Leucaena leucocephala-based intensive silvopastoral systems. Tropical and Subtropical Agroecosystems 18, 303–311.

Danielsson R, Schnürer A, Arthurson V, Bertilsson J (2012) Methanogenic population and CH4 production in Swedish dairy cows fed different levels of forage. Applied and Environmental Microbiology 78, 6172–6179.
Methanogenic population and CH4 production in Swedish dairy cows fed different levels of forage.Crossref | GoogleScholarGoogle Scholar | 22752163PubMed |

Delgado DC, Galindo J, González R, González N, Scull I, Dihigo L, Cairo J, Aldama AI, Moreira O (2012) Feeding of tropical trees and shrub foliages as a strategy to reduce ruminal methanogenesis: studies conducted in Cuba. Tropical Animal Health and Production 44, 1097–1104.
Feeding of tropical trees and shrub foliages as a strategy to reduce ruminal methanogenesis: studies conducted in Cuba.Crossref | GoogleScholarGoogle Scholar | 22205224PubMed |

Dhanoa MS, López S, Dijkstra K, Davis DR, Sandeson R, Williams BA, Sileshi ZY, France J (2000) Estimating the extent of degradation of ruminant feed from a description of their gas profiles observed in vitro: comparison of models. British Journal of Nutrition 83, 131–142.
Estimating the extent of degradation of ruminant feed from a description of their gas profiles observed in vitro: comparison of models.Crossref | GoogleScholarGoogle Scholar |

Ejelonu OC, Elekofehintia OO, Adanlawob IG (2017) Tithonia diversifolia saponin-blood lipid interaction and its influence on immune system of normal wistar rats. Biomedicine and Pharmacotherapy 87, 589–595.
Tithonia diversifolia saponin-blood lipid interaction and its influence on immune system of normal wistar rats.Crossref | GoogleScholarGoogle Scholar | 28086134PubMed |

Eugène M, Martin C, Mialon MM, Krauss D, Renand G, Doreau M (2011) Dietary linseed and starch supplementation decrease methane production of fattening bulls. Animal Feed Science and Technology 166–167, 330–337.
Dietary linseed and starch supplementation decrease methane production of fattening bulls.Crossref | GoogleScholarGoogle Scholar |

Fondevilla M, Barrios A (2001) La técnica de producción de gas y su aplicación al estudio del valor nutritivo de los forrajes. Revista Cubana de Ciencia Avícola 35, 197–211.

Foo LY, Lu Y, McNabb WC, Waghorn G, Ulyatt MJ (1997) Proanthocyanidins from Lotus pedunculatus. Phytochemistry 45, 1689–1696.
Proanthocyanidins from Lotus pedunculatus.Crossref | GoogleScholarGoogle Scholar |

Galindo J, González N, Sosa A, Ruíz T, Torres V, Aldana A, Díaz H, Moreira O, Sarduy L, Noda A (2011) Efecto de Tithonia diversifolia (Hemsl.) A. Gray (botón de oro) en la población de protozoos y metanógenos ruminales en condiciones in vitro. Revista Cubana de Ciencia Avícola 45, 33–37.

Galindo-Blanco JL, Rodríguez-García I, González-Ibarra N, García-López R, Herrera-Villafranca M (2018) Sistema silvopastoril con Tithonia diversifolia (Hemsl.) A. Gray: efecto en la población microbiana ruminal de vacas. Pastos y Forrajes 41, 273–280.

Gallego-Castro LA, Mahecha-Ledesma L, Angulo-Arizala J (2016) Calidad nutricional de Tithonia diversifolia (Hemsl.) A. Gray bajo tres sistemas de siembra en el trópico alto. Agronomía Mesoamericana 28, 213–222.
Calidad nutricional de Tithonia diversifolia (Hemsl.) A. Gray bajo tres sistemas de siembra en el trópico alto.Crossref | GoogleScholarGoogle Scholar |

Gaviria-Uribe X, Naranjo-Ramírez JF, Bolívar-Vergara DM, Barahona-Rosales R (2015) Consumo y digestibilidad en novillos cebuínos en un sistema silvopastoril intensivo. Archivos de Zootecnia 64, 21–27.
Consumo y digestibilidad en novillos cebuínos en un sistema silvopastoril intensivo.Crossref | GoogleScholarGoogle Scholar |

Halmemies-Beauchet-Filleau A, Rinne M, Lamminen M, Mapato C, Ampapon T, Wanapat M, Vanhatalo A (2018) Review: alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects. Animal 12, s295–s309.
Review: alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects.Crossref | GoogleScholarGoogle Scholar | 30318027PubMed |

Holtshausen L, Chaves AV, Beauchemin KA, McGinn SM, McAllister T, Odongo N (2009) Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. Journal of Dairy Science 92, 2809–2821.
Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows.Crossref | GoogleScholarGoogle Scholar | 19448015PubMed |

Hook SE, Wright ADG, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010, 945785
Methanogens: methane producers of the rumen and mitigation strategies.Crossref | GoogleScholarGoogle Scholar | 21253540PubMed |

ICONTEC (2001) ‘NTC 4981. Alimentos para animales. Determinación del contenido de fosforo. Método espectrofotométrico.’ (Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia)

ICONTEC (2003) ‘NTC 5151. Alimento para animales. Determinación de los contenidos de Calcio, Cobre, Hierro, Magnesio, Manganeso, Potasio, Sodio y Zinc. Método usando espectrometría de absorción atómica.’ (Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia)

LaO O, González H, Orozco A, Castillo Y, Ruiz O, Estrada A, Ríos F, Gutiérrez E, Bernal H, Valenciaga D, Castro BI, Hernánez Y (2012) Composición química, degradabilidad ruminal in situ y digestibilidad in vitro de ecotipos de Tithonia diversifolia de interés para la alimentación de rumiantes. Revista Cubana de Ciencia Avícola 46, 47–53.

Lavrenčič A, Stefanon B, Susmel P (1997) An evaluation of the Gompertz model in degradability studies of forage chemical components. Animal Science 64, 423–431.
An evaluation of the Gompertz model in degradability studies of forage chemical components.Crossref | GoogleScholarGoogle Scholar |

Mahecha-Ledesma L, Angulo-Arizala J, Barragán-Hernández W (2017) Calidad nutricional, dinámica fermentativa y producción de metano de arreglos silvopastoriles. Agronomía Mesoamericana 28, 371–387.
Calidad nutricional, dinámica fermentativa y producción de metano de arreglos silvopastoriles.Crossref | GoogleScholarGoogle Scholar |

Martin C, Rouel J, Jouany JP, Doreau M, Chilliard Y (2008) Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. Journal of Animal Science 86, 2642–2650.
Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil.Crossref | GoogleScholarGoogle Scholar | 18469051PubMed |

Mauricio RM, Calsavara LHF, Ribeiro RS, Pereira LGR, Freitas DS, Paciullo DS, Barahona R, Rivera JE, Chará J, Murgueitio E (2017) Feeding ruminants using Tithonia diversifolia as forage. Journal of Dairy, Veterinary & Animal Research 5, 00146

Mejía-Díaz E, Mahecha-Ledesma L, Angulo-Arizala J (2017) Tithonia diversifolia: especie para ramoneo en sistemas silvopastoriles y métodos para estimar su consumo. Agronomía Mesoamericana 28, 289–302.
Tithonia diversifolia: especie para ramoneo en sistemas silvopastoriles y métodos para estimar su consumo.Crossref | GoogleScholarGoogle Scholar |

Molina IC, Donneys G, Montoya S, Villegas G, Rivera JE, Chará J, Lopera JJ, Barahona R (2015) Emisiones in vivo de metano en sistemas de producción con y sin inclusión de Tithonia diversifolia. In ‘Memorias: 3er Congreso Nacional de Sistemas Silvopastoriles y VIII Congreso Internacional de Sistemas Agroforestales’. (Ed. PL Peri) pp. 678–682. (INTA: Puerto Iguazú, Argentina)

Molina IC, Angarita E, Mayorga OL, Chará J, Barahona R (2016) Effect of Leucaena leucoceophala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livestock Science 185, 24–29.
Effect of Leucaena leucoceophala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus.Crossref | GoogleScholarGoogle Scholar |

O’Mara F (2004) Greenhouse gas production from dairying: reducing methane production. Advances in Dairy Technology 16, 295–309.

Ørskov ER, McDonald I (1979) The estimate of protein degradability in the rumen from incubation measurements weighed according to rate of passage. The Journal of Agricultural Science 92, 499–503.
The estimate of protein degradability in the rumen from incubation measurements weighed according to rate of passage.Crossref | GoogleScholarGoogle Scholar |

Ribeiro RS, Terry SA, Sacramento JP, Rocha e Silveira S, Bento CB, Silva EF, Montovani HC, Gama MAS, Pereira LG, Tomich TR, Mauricio RM, Chaves A (2016) Tithonia diversifolia as a supplementary feed for dairy cows. PLoS One 11, e0165751
Tithonia diversifolia as a supplementary feed for dairy cows.Crossref | GoogleScholarGoogle Scholar | 27906983PubMed |

Rivera J (2020) Variabilidad fenotípica y genética de Tithonia diversifolia (Hemsl.) A. Gray, una planta para la producción animal sostenible en Colombia. PhD Thesis, Faculty of Agricultural Sciences, University of Antioquia, Medellín, Colombia.

Rivera JE, Naranjo JF, Cuartas CA, Arenas FA (2013) Fermentación in vitro y composición química de algunos forrajes y dietas ofrecidas bajo un sistema silvopastoril en el trópico de altura. Livestock Research for Rural Development 25, 174

Rivera JE, Molina IC, Donney’s G, Villegas G, Chará J, Barahona R (2015a) Dinámica de fermentación y producción de metano en dietas de sistemas silvopastoriles intensivos con L. leucocephala y sistemas convencionales orientados a la producción de leche. Livestock Research for Rural Development 27, 76

Rivera JE, Cuartas CA, Naranjo JF, Tafur O, Hurtado EA, Arenas FA, Chará J, Murgueitio E (2015b) Efecto de la oferta y el consumo de Tithonia diversifolia en un sistema silvopastoril intensivo (SSPi), en la calidad y productividad de leche bovina en el piedemonte Amazónico colombiano. Livestock Research for Rural Development 27, 189

Rivera JE, Gómez-Leyva JF, Castaño K, Morales JG, Chará J, Barahona R (2017) Diversidad molecular, química y morfológica en materiales de Tithonia diversifolia (Hemsl.) Gray para la alimentación animal en Colombia y México. In ‘Memorias: IX Congreso Internacional Sobre Sistemas Silvopastoriles’. (Eds J Chará, P Peri, JE Rivera, E Murgueitio, K Castaño) pp. 249–255. (Centro Para la Investigación en Sistemas Sostenibles de Producción Agropecuaria (CIPAV): Manizales, Colombia)

Rivera JE, Chará J, Gómez-Leyva JF, Ruíz T, Barahona R (2018) Variabilidad fenotípica y composición fitoquímica de Tithonia diversifolia A. Gray para la producción animal sostenible. Livestock Research for Rural Development 30, 200 http://www.lrrd.org/lrrd30/12/rive30200.html

Rivera J, Lopera J, Chará J, Gómez-Leyva J, Barahona R, Enrique E (2019) Genetic and morphological diversity of Tithonia diversifolia (Hemsl.) A. Gray for use in silvopastoral systems of Latin America. In ‘Book of abstracts 4th World Congress on Agroforestry’. (Eds C Dupraz, M Gosme, G Lawson) pp. 712. (CIRAD/INR/World Agroforestry: Montpellier)

Santos-Gally R, Muñoz M, Franco G (2020) Fruit heteromorphism and germination success in the perennial shrub Tithonia diversifolia (Asteraceae). Flora 271, 151686
Fruit heteromorphism and germination success in the perennial shrub Tithonia diversifolia (Asteraceae).Crossref | GoogleScholarGoogle Scholar |

Terry SA, Ribeiro RS, Freitas DS, Delarota GD, Pereira LGR, Tomich CTR, Mauricio RM, Chaves AV (2016) Effects of Tithonia diversifolia on in vitro methane production and ruminal fermentation characteristics. Animal Production Science 56, 437–441.
Effects of Tithonia diversifolia on in vitro methane production and ruminal fermentation characteristics.Crossref | GoogleScholarGoogle Scholar |

Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48, 185–197.
A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds.Crossref | GoogleScholarGoogle Scholar |

Valenciaga D, López JR, Galindo J, Ruiz T, Monteagudo F (2018) Cinética de degradación ruminal de materiales vegetales de Tithonia diversifolia recolectados en la región oriental de Cuba. Livestock Research for Rural Development 30, 186

Williams SRO, Hannah MC, Jacobs JL, Wales WJ, Moate PJ (2019) Volatile fatty acids in ruminal fluid can be used to predict methane yield of dairy cows. Animals 9, 1006
Volatile fatty acids in ruminal fluid can be used to predict methane yield of dairy cows.Crossref | GoogleScholarGoogle Scholar |

Yan T, Mayne CS, Porter MG (2006) Effects of dietary and animal factors on methane production in dairy cows offered grass silage-based diets. International Congress Series 1293, 123–126.
Effects of dietary and animal factors on methane production in dairy cows offered grass silage-based diets.Crossref | GoogleScholarGoogle Scholar |

Yáñez-Ruiz DR, Bannink A, Dijkstra J, Kebreab E, Morgavi DP, O’Kiely P, Reynolds CK, Schwarm A, Shingfield KJ, Yu Z, Hristov AN (2016) Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Animal Feed Science and Technology 216, 1–18.
Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review.Crossref | GoogleScholarGoogle Scholar |