Changes in surface soil properties and macroinvertebrate communities with the conversion of secondary forests to oil palm (Elaeis guineensis) plantations
Joseph G. Yeo A , Julien K. N’Dri A C , Ettien F. Edoukou B and Jean-Luc D. S. Ahui AA Unité de Formation et de Recherche (UFR) des Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire.
B Centre de Recherche en Ecologie, 08 BP 109 Abidjan 08, Côte d’Ivoire.
C Corresponding author. Email: ndri_jk@yahoo.fr
Crop and Pasture Science 71(9) 837-849 https://doi.org/10.1071/CP19370
Submitted: 10 September 2019 Accepted: 8 September 2020 Published: 12 October 2020
Abstract
The conversion of natural forest to oil palm (Elaeis guineensis Jacq.) plantation is perceived as a threat to biodiversity conservation. The aims of this investigation were to assess variation in soil physico-chemical parameters and macroinvertebrate structures following the conversion of secondary forests to oil palm plantations, and to understand what to expect with the aging of the plantations. We hypothesised that soil properties would be improved with respect to biodiversity conservation with the aging of the oil palm plantations. Sampling was carried out in secondary forests, and in 13-, 20- and 39-year-old oil palm plantations at the La Mé Station, Côte d’Ivoire. Three sampling areas were established in each land-use type and age class, for a total of 12 sampling areas. Over a 50-m transect, litter-dwelling macroinvertebrates were sampled by using pitfall traps, and topsoil (0–10 cm) macroinvertebrates by using monoliths (50 cm by 50 cm by 10 cm), following the modified ‘Tropical soil biology and fertility’ method. Soil physical and chemical parameters were characterised. The results showed that the conversion of secondary forests to oil palm plantations was characterised by changes in soil macroinvertebrate density (–30%), taxonomic richness (–37%) and functional groups (–17%), as well as soil bulk density (+14%) and water content (+16%), after ~39 years of conversion. Soil organic carbon, total nitrogen and organic matter increased with the aging of plantations, and reached conditions similar to those of secondary forests. The human interference imposed on macroinvertebrate communities during site preparation and planting was not compensated by the reduction in the soil-degradation index over time. The results have implications for implementation of conservation agriculture and the related management practices.
Keywords: African oil palm, agrosystem, deforestation, disturbance, soil biota, soil health, soil organic matter, trophic guilds.
References
Anderson JM, Ingram JSI (1993) ‘Tropical soil biology and fertility: a handbook of methods.’ 2nd edn. (CAB International: Wallingford, UK)Assié KH, Angui P, Tamia AJ (2008) Effets de la mise en culture et des contraintes naturelles sur quelques propriétés physiques d’un sol ferrallitique au Centre Ouest de la Côte d’Ivoire: conséquences sur la dégradation des sols. European Journal of Scientific Research 23, 149–166.
Bachelier G (1978) ‘La faune des sols, son écologie et son action.’ (ORSTOM: Paris)
Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution 31, 440–452.
| An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability.Crossref | GoogleScholarGoogle Scholar |
Brühl CA, Eltz T (2010) Fuelling the biodiversity crisis: species loss of ground-dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo). Biodiversity and Conservation 19, 519–529.
| Fuelling the biodiversity crisis: species loss of ground-dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo).Crossref | GoogleScholarGoogle Scholar |
Călugăr A, Ivan O (2016) Soil microarthropods and their bioindicator value regarding the bio-edaphic conditions in forest ecosystems of Danube Delta. Studia Universitatis Vasile Goldis: Seria Stiintele Vietii 26, 215–219.
Carron MP, Auriac Q, Snoeck D, Villenave C, Blanchart E, Ribeyre F, Marichal R, Darminto M, Caliman JP (2015) Spatial heterogeneity of soil quality around mature oil palms receiving mineral fertilization. European Journal of Soil Biology 66, 24–31.
| Spatial heterogeneity of soil quality around mature oil palms receiving mineral fertilization.Crossref | GoogleScholarGoogle Scholar |
Coleman DC, Crossley DA, Jr, Hendrix PF (2004) ‘Fundamentals of soil ecology.’ 2nd edn. (Academic Press: Burlington, VT, USA)
Conti FD (2015) Conservation agriculture and soil fauna: only benefits or also potential threats? A review. ECronicon Agriculture 2, 473–482.
Dawoe EK, Quashie-Sam JS, Oppong SK (2014) Effect of landuse conversion from forest to cocoa agroforest on soil characteristics and quality of a Ferric Lixisol in lowland humid Ghana. Agroforestry Systems 88, 87–99.
| Effect of landuse conversion from forest to cocoa agroforest on soil characteristics and quality of a Ferric Lixisol in lowland humid Ghana.Crossref | GoogleScholarGoogle Scholar |
Diabaté S, Koutou A, Wongbé Y, Brou KG, Gogbé BF, Kouadjo CG (2014) Étude comparée de la réaction phénolique chez quatre clones de palmiers à huile dans le pathosystème Elaeis guineensis–Fusarium oxysporum f.sp. elaeidis au stade prépépinière. Journal of Animal and Plant Sciences 21, 3241–3250.
Diabaté S, Kouadio LD, Brou KG, Wongbé Y, Konan JN, Konan KE, Abo K (2015) Étude de l’influence du facteur antécédent cultural palmiers et cocotiers sur l’évolution de la fusariose vasculaire chez six clones de palmiers à huile de Côte d’Ivoire. Journal of Applied Biosciences 92, 8570–8577.
| Étude de l’influence du facteur antécédent cultural palmiers et cocotiers sur l’évolution de la fusariose vasculaire chez six clones de palmiers à huile de Côte d’Ivoire.Crossref | GoogleScholarGoogle Scholar |
Drescher J, Rembold K, Allen K, Beckschäfer P, Buchori D, Clough Y, Faust H, Fauzi AM, Gunawan D, Hertel D, Irawan B, Jaya INS, Klamer B, Kleinn C, Knohl A, Kotowska MM, Krashevska V, Krishna V, Leuschner C, Lorenz W, Meijide A, Melati D, Nomura M, Pérez-Cruzado C, Qaim M, Siregar IZ, Steinebach S, Tjoa A, Tscharntke T, Wick B, Wiegand K, Kreft H, Scheu S (2016) Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 371, 20150275
| Ecological and socio-economic functions across tropical land use systems after rainforest conversion.Crossref | GoogleScholarGoogle Scholar | 27114577PubMed |
Edwards FA, Edwards DP, Larsen TH, Hsu WW, Benedick S, Chung A, Khen CV, Wilcove DS, Hamer KC (2014) Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot? Animal Conservation 17, 163–173.
| Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot?Crossref | GoogleScholarGoogle Scholar | 25821399PubMed |
Foster WA, Snaddon JL, Turner EC, Fayle TM, Cockerill TD, Ellwood MDF, Broad GR, Chung AYC, Eggleton P, Khen CV, Yusah KM (2011) Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366, 3277–3291.
| Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia.Crossref | GoogleScholarGoogle Scholar | 22006968PubMed |
Ghazali A, Asmah S, Syaðq M, Yahya MS, Aziz N, Peng T, Norhisham AR, Puan CL, Turner EC, Azhar B (2016) Effects of monoculture and polyculture farming in oil palm smallholdings on terrestrial arthropod diversity. Journal of Asia–Pacific Entomology 19, 415–421.
| Effects of monoculture and polyculture farming in oil palm smallholdings on terrestrial arthropod diversity.Crossref | GoogleScholarGoogle Scholar |
Goodrick I, Nelson PN, Banabas M, Wurster CM, Bird MI (2015) Soil carbon balance following conversion of grassland to oil palm. Global Change Biology. Bioenergy 7, 263–272.
| Soil carbon balance following conversion of grassland to oil palm.Crossref | GoogleScholarGoogle Scholar |
Hamilton RL, Trimmer M, Bradley C, Pinay G (2016) Deforestation for oil palm alters the fundamental balance of the soil N cycle. Soil Biology & Biochemistry 95, 223–232.
| Deforestation for oil palm alters the fundamental balance of the soil N cycle.Crossref | GoogleScholarGoogle Scholar |
Hättenschwiler S, Barantal S, Ganault P, Gillespie L, Coq S (2018) Quels enjeux sont associés à la biodiversité des sols? Innovations Agronomiques 69, 1–14.
Hedde M (2018) Indicateurs basés sur la faune des sols: des outils pour l’agriculture innovante? Innovations Agronomiques 69, 15–26.
Hergoualc’h K, Hendry DT, Murdiyarso D, Verchot LV (2017) Total and heterotrophic soil respiration in a swamp forest and oil palm plantations on peat in Central Kalimantan, Indonesia. Biogeochemistry 135, 203–220.
| Total and heterotrophic soil respiration in a swamp forest and oil palm plantations on peat in Central Kalimantan, Indonesia.Crossref | GoogleScholarGoogle Scholar |
Jacquemard J-C (2011) ‘Le palmier à huile.’ (Quæ, CTA, Presses Agronomiques de Gembloux)
Julliard R, Clavel J, Devictor V, Jiguet F, Couvet D (2006) Spatial segregation of specialists and generalists in bird communities. Ecology Letters 9, 1237–1244.
| Spatial segregation of specialists and generalists in bird communities.Crossref | GoogleScholarGoogle Scholar | 17040326PubMed |
Khasanah N, van Noordwijk M, Ningsih H, Rahayu S (2015) Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia. Agriculture, Ecosystems & Environment 211, 195–206.
| Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia.Crossref | GoogleScholarGoogle Scholar |
Koh PL (2008) Can oil palm plantations be made more hospitable for forest butterflies and birds? Journal of Applied Ecology 45, 1002–1009.
| Can oil palm plantations be made more hospitable for forest butterflies and birds?Crossref | GoogleScholarGoogle Scholar |
Koh LP, Wilcove DS (2008) Is oil palm agriculture really destroying tropical biodiversity? Conservation Letters 1, 60–64.
| Is oil palm agriculture really destroying tropical biodiversity?Crossref | GoogleScholarGoogle Scholar |
Konan KE, Koné B, Adon NB, Diabaté S, Koutou A, Ballo K (2006) Bien cultiver le palmier à huile en Côte d’Ivoire. Fiche palmier No. 1, Centre National de Recherche Agronomique, Côte d’Ivoire.
Luke SH, Fayle TM, Eggleton P, Turner EC, Davies RG (2014) Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodiversity and Conservation 23, 2817–2832.
| Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo.Crossref | GoogleScholarGoogle Scholar |
Luskin MS, Potts MD (2011) Microclimate and habitat heterogeneity through the oil palm lifecycle. Basic and Applied Ecology 12, 540–551.
| Microclimate and habitat heterogeneity through the oil palm lifecycle.Crossref | GoogleScholarGoogle Scholar |
Minor MA, Cianciolo JM (2007) Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Applied Soil Ecology 35, 140–153.
| Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York.Crossref | GoogleScholarGoogle Scholar |
Mumme S, Jochum M, Brose U, Haneda NF, Barnes AD (2015) Functional diversity and stability of litter-invertebrate communities following land-use change in Sumatra, Indonesia. Biological Conservation 191, 750–758.
| Functional diversity and stability of litter-invertebrate communities following land-use change in Sumatra, Indonesia.Crossref | GoogleScholarGoogle Scholar |
N’Dri JK, N’Guessan KK (2018) Modification of topsoil physico-chemical characteristics and macroinvertebrates structure consecutive to the conversion of secondary forests into rubber plantations in Grand-Lahou, Côte d’Ivoire. Journal of Advances in Agriculture 8, 1235–1255.
| Modification of topsoil physico-chemical characteristics and macroinvertebrates structure consecutive to the conversion of secondary forests into rubber plantations in Grand-Lahou, Côte d’Ivoire.Crossref | GoogleScholarGoogle Scholar |
Noti M-I, André HM, Ducarme X, Lebrun P (2003) Diversity of soil oribatid mites (Acari: Oribatida) from High Katanga (Democratic Republic of Congo): a multiscale and multifactor approach. Biodiversity and Conservation 12, 767–785.
| Diversity of soil oribatid mites (Acari: Oribatida) from High Katanga (Democratic Republic of Congo): a multiscale and multifactor approach.Crossref | GoogleScholarGoogle Scholar |
Oke OC, Alohan FI, Uzibor MO, Chokor JU (2008) Land snail diversity and species richness in an oil palm agroforest in Egbeta, Edo State, Nigeria. Bioscience Research Communications 20, 249–256.
Ollagnier M, Ochs R (1981) Gestion de la nutrition minérale des plantations industrielles de palmier à huile: économie d’engrais. Oléagineux 36, 409–421.
Osseni B, Koné S, Lorng JP, Okou H, N’diaye O (2009) La filière palmier à huile, la filière du progrès. Bulletin d’informations No. 5. Fond Interprofessionnel pour la Recherche et le Conseil Agricoles.
Palmafrique (2017) Le palmier à huile dans l’économie Ivoirienne. Palmafrique, Abidjan, Côte d’Ivoire. Available at: http://www.palmafrique.com/lhuile-de-palme-dans-leconomie-ivoirienne/ (accessed 29 December 2017).
Péné CB, Assa DA (2003) Variations interannuelles de la pluviométrie et de l’alimentation hydrique de la canne à sucre en Côte-d’Ivoire. Sécheresse 14, 43–52.
Rival A, Levang P (2013) La palme des controverses: palmier à huile et enjeux de développement. Éditions Quæ, CIRAD, Paris.
Sabrina DT, Hanað MM, Nor Azwady AA, Mahmud TMM (2009) Earthworm populations and cast properties in the soils of oil palm plantations. The Malaysian Journal of Soil Science 13, 29–42.
Stichnothe H, Bessou C (2017) Challenges for life cycle assessment of palm oil production system. Indonesian Journal of Life Cycle Assessment & Sustainability 1, 1–9.
Tao HH, Slade EM, Willis KJ, Caliman J-P, Snaddon JL (2016) Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation. Agriculture, Ecosystems & Environment 218, 133–140.
| Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation.Crossref | GoogleScholarGoogle Scholar |
Tao HH, Snaddon JL, Slade EM, Caliman J-P, Widodo RH, Suhardi , Willis KJ (2017) Long-term crop residue application maintains oil palm yield and temporal stability of production. Agronomy for Sustainable Development 37, 33
| Long-term crop residue application maintains oil palm yield and temporal stability of production.Crossref | GoogleScholarGoogle Scholar | 32010239PubMed |
ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179.
| Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis.Crossref | GoogleScholarGoogle Scholar |
Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Statistics and Computing 7, 75–83.
| ADE-4: a multivariate analysis and graphical display software.Crossref | GoogleScholarGoogle Scholar |
Traoré K, Péné CB (2016) Étude phytoécologique des adventices dans les agroécosystèmes élaeicoles de la Mé et de Dabou, en basse Côte d’Ivoire. Journal of Applied Biosciences 104, 10005–10018.
| Étude phytoécologique des adventices dans les agroécosystèmes élaeicoles de la Mé et de Dabou, en basse Côte d’Ivoire.Crossref | GoogleScholarGoogle Scholar |
Vargas LEP, Laurance WF, Clements GR, Edwards W (2015) The impacts of oil palm agriculture on Colombia’s biodiversity: what we know and still need to know. Tropical Conservation Science 8, 828–845.
| The impacts of oil palm agriculture on Colombia’s biodiversity: what we know and still need to know.Crossref | GoogleScholarGoogle Scholar |
Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. Journal of Ecology 98, 725–736.
| The use of chronosequences in studies of ecological succession and soil development.Crossref | GoogleScholarGoogle Scholar |
Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37, 29–38.
| An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method.Crossref | GoogleScholarGoogle Scholar |
Waneukem V, Ganry F (1992) Relations entre les formes d’azote organique du sol et l’azote absorbé par la plante dans un sol ferrallitique du Sénégal. Cahiers de l’ORSTOM, série. Pédologie 27, 97–107.
WRM (2008) Oil palm and rubber plantations in Western and Central Africa: An Overview. World Rainforest Movement, Montevideo, Uruguay. Available at: https://wrm.org.uy/books-and-briefings/oil-palm-and-rubber-plantations-in-western-and-central-africa-an-overview/ (accessed 3 April 2020)
Wu D, Zhang B, Bu Z, Chen P (2006) The community characteristics of soil mites under different land uses in Changchun metropolitan area, China. Acta Ecologica Sinica 26, 16–25.
| The community characteristics of soil mites under different land uses in Changchun metropolitan area, China.Crossref | GoogleScholarGoogle Scholar |
Yang X, Chen J (2009) Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biology & Biochemistry 41, 910–918.
| Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China.Crossref | GoogleScholarGoogle Scholar |
Yeboua K, Ballo K (2000) Caractéristiques chimiques du sol sous palmeraie. Cahiers Agricultures 9, 73–76.