Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

An insecticide baseline study of Australian broadacre aphids

Annabel Clouston A , Owain Edwards B and Paul Umina A C D
+ Author Affiliations
- Author Affiliations

A cesar, 293 Royal Parade, Parkville, Vic. 3052, Australia.

B CSIRO Land and Water Flagship, Floreat, WA 6014, Australia.

C School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia.

D Corresponding author. Email: pumina@unimelb.edu.au

Crop and Pasture Science 67(2) 236-244 https://doi.org/10.1071/CP15208
Submitted: 18 December 2014  Accepted: 27 October 2015   Published: 29 February 2016

Abstract

Brevicoryne brassicae (Linnaeus), Lipaphis pseudobrassicae (Davis), Acyrthosiphon kondoi (Shinji), Aphis craccivora (Koch) and Rhopalosiphum padi (Linnaeus) are among the most important aphid pests in Australian broadacre systems. In this study a leaf-dip method was used to assay pirimicarb, dimethoate, α-cypermethrin and imidacloprid against field populations collected from Victoria, New South Wales, South Australia, Western Australia and Queensland. This research established toxicity baseline data that will be important for future monitoring of insecticide responses in broadacre crops. It also provided an opportunity to identify any chemical tolerance that may be evolving in these pests. Acyrthosiphon craccivora populations showed differences in their responses to dimethoate, pirimicarb and imidacloprid (but not to α-cypermethrin), indicating possible shifts in field sensitivity to these three chemicals. Rhopalosiphum padi had the lowest sensitivity to all insecticides tested, with two populations (collected from South Australia and Queensland) showing less than 100% mortality when tested at the field rate of α-cypermethrin. There were few differences in insecticide responses between populations of the other three species. Continued screening of A. craccivora and R. padi populations is needed to fully assess the current status of tolerance among field populations and to strengthen resistance management tactics.

Additional keywords: entomology, insect pests, pest management resistance, reduced sensitivity, toxicology.


References

Ahmad M, Akhtar S (2013) Development of insecticide resistance in field populations of Brevicoryne brassicae (Hemiptera: Aphididae) in Pakistan. Journal of Economic Entomology 106, 954–958.
Development of insecticide resistance in field populations of Brevicoryne brassicae (Hemiptera: Aphididae) in Pakistan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Khtrg%3D&md5=b3fd9d186dce3a19deb31e0aeaf42aedCAS | 23786087PubMed |

Ahmad M, Arif M, Denholm I (2003) High resistance of field populations of the cotton aphid Aphis gossypii Glover (Homoptera: Aphididae) to pyrethroid insecticides in Pakistan. Journal of Economic Entomology 96, 875–878.
High resistance of field populations of the cotton aphid Aphis gossypii Glover (Homoptera: Aphididae) to pyrethroid insecticides in Pakistan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVShsb0%3D&md5=6c7fe5884297fe3042283e653bb9947fCAS | 12852630PubMed |

APVMA (2015) Public Chemical Registration Information System Search. Available at: https://portal.apvma.gov.au/pubcris (accessed 14 August 2015).

Berlandier FA, Thackray D, Jones RAC, Latham LJ, Cartwright L (1997) Determining the relative roles of different aphid species as vectors of cucumber mosaic and bean yellow mosaic viruses in lupins. Annals of Applied Biology 131, 297–314.
Determining the relative roles of different aphid species as vectors of cucumber mosaic and bean yellow mosaic viruses in lupins.Crossref | GoogleScholarGoogle Scholar |

Blackman RL, Eastop VF (Eds) (2000) ‘Aphids on the world’s crops: an identification and information guide.’ 2nd edn. (John Wiley & Sons Ltd: West Sussex, England)

Bonnemain J (2010) Aphids as biological models and agricultural pests. Comptes Rendus Biologies 333, 461–463.
Aphids as biological models and agricultural pests.Crossref | GoogleScholarGoogle Scholar | 20541157PubMed |

Chen M, Han Z, Qiao X, Qu M (2007) Mutations in acetylcholinesterase gense of Rhopalosiphum padi resistant to organophosphate and carbamate insecticides. Genome 50, 172–179.
Mutations in acetylcholinesterase gense of Rhopalosiphum padi resistant to organophosphate and carbamate insecticides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlOgur8%3D&md5=30452ce7391324e96f723488be366671CAS | 17546082PubMed |

Coutts BA, Hawkes JR, Jones RAC (2006) Occurence of Beet western yellows virus and its aphid vectors in over-summering broad-leafed weeds and volunteer crop plants in the grainbelt region of south-western Australia. Australian Journal of Agricultural Research 57, 975–982.
Occurence of Beet western yellows virus and its aphid vectors in over-summering broad-leafed weeds and volunteer crop plants in the grainbelt region of south-western Australia.Crossref | GoogleScholarGoogle Scholar |

DAFF (2014) Aphids in field crops. Available at: www.daff.qld.gov.au/plants/field-crops-and-pastures/broadacre-field-crops/integrated-pest-management/a-z-insect-pest-list/aphid-overview (accessed 23 June 2014).

Dedryver C, Le Ralec A, Fabre F (2010) The conflicting relationships between aphids and men: a review of aphid damage and control strategies. Comptes Rendus Biologies 333, 539–553.
The conflicting relationships between aphids and men: a review of aphid damage and control strategies.Crossref | GoogleScholarGoogle Scholar | 20541165PubMed |

Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J, Grbic M, Clark RM, Feyereisen R, Van Leeuwen T (2013) A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proceedings of the National Academy of Sciences of the United States of America 110, E113–E122.
A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFert7o%3D&md5=5e092737a6199dc247dd253c62b4a61dCAS | 23248300PubMed |

Dhingra S (1994) Development of resistance in the bean aphid, Aphis craccivora Koch. to various insecticides used nearly a quarter century. Journal of Entomological Research 18, 105–108.

Dimetry NZ, Marei SS (1992) Laboratory evaluation of some pesticides on the cabbage aphid, Brevicoryne brassicae L. and their side effects on some important natural enemies. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz 65, 19–20.

Edwards OR (2001) Interspecific and intraspecific variation in the performance of three aphid species on five grain legume hosts. Entomologia Experimentalis et Applicata 100, 21–30.
Interspecific and intraspecific variation in the performance of three aphid species on five grain legume hosts.Crossref | GoogleScholarGoogle Scholar | 26921877PubMed |

Edwards OR, Franzmann B, Thackray D, Micic S (2008) Insecticide resistance and implications for future aphid management in Australian grains and pastures: a review. Australian Journal of Experimental Agriculture 48, 1523–1530.
Insecticide resistance and implications for future aphid management in Australian grains and pastures: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlentLvK&md5=36cdd70337cb18aa7fdba23ae34c23bcCAS | 26921877PubMed |

Furk C, Hines C (1993) Aspects of insecticide resistance in the melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae). Annals of Applied Biology 123, 9–17.
Aspects of insecticide resistance in the melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae).Crossref | GoogleScholarGoogle Scholar |

Gore J, Cook D, Catchot A, Leonard B, Stewart S, Lorenz G, Kerns D (2013) Cotton aphid (Heteroptera: Aphididae) susceptibility to commercial and experimental insecticides in the Southern United States. Journal of Economic Entomology 106, 1430–1439.
Cotton aphid (Heteroptera: Aphididae) susceptibility to commercial and experimental insecticides in the Southern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslClsLY%3D&md5=a554714cacaf3a39509db68e609e94c2CAS | 23865211PubMed |

Herron GA, Wilson LJ (2011) Neonicotinoid resistance in Aphis gossypii Glover (Aphididae: Hemiptera) from Australian cotton. Australian Journal of Entomology 50, 93–98.
Neonicotinoid resistance in Aphis gossypii Glover (Aphididae: Hemiptera) from Australian cotton.Crossref | GoogleScholarGoogle Scholar |

Herron GA, Gibson TS, Horwood MA (1993) Insecticide-resistance in Myzus persicae (Sulzer) (Hemiptera: Aphididae) in southeastern Australia. Journal of the Australian Entomological Society 32, 23–27.
Insecticide-resistance in Myzus persicae (Sulzer) (Hemiptera: Aphididae) in southeastern Australia.Crossref | GoogleScholarGoogle Scholar |

Herron GA, Powis K, Rophail J (2001) Insecticide resistance in Aphis gossypii Glover (Hemiptera: Aphididae), a serious threat to Australian cotton. Australian Journal of Entomology 40, 85–91.
Insecticide resistance in Aphis gossypii Glover (Hemiptera: Aphididae), a serious threat to Australian cotton.Crossref | GoogleScholarGoogle Scholar |

Herron GA, Langfield BJ, Tomlinson TM, Mo J (2011) Dose-response testing of Australian populations of onion thrips Thrips tabaci Lindeman (Thysanoptera: Thripidae) further refines baselines data and detects methidathion and likely imidacloprid resistance. Australian Journal of Entomology 50, 418–423.
Dose-response testing of Australian populations of onion thrips Thrips tabaci Lindeman (Thysanoptera: Thripidae) further refines baselines data and detects methidathion and likely imidacloprid resistance.Crossref | GoogleScholarGoogle Scholar |

Herron GA, Langfield BJ, Bogema DR, Chen Y (2014a) Baseline `susceptibility and cross-resistance in Aphis gossypii Glover (Aphididae: Hemiptera) to phorate and sulfoxaflor. Australian Entomologist 53, 32–35.
Baseline `susceptibility and cross-resistance in Aphis gossypii Glover (Aphididae: Hemiptera) to phorate and sulfoxaflor.Crossref | GoogleScholarGoogle Scholar |

Herron GA, Marshall KL, Cornwell GW (2014b) Australian baseline data for western flower thrips (Frankliniella occidentalis) susceptibility to cyantraniliprole (DPX-HGW86) and the establishment of a discriminating dose for resistance detection. General and Applied Entomology 40, 1–5.

Hoffmann A, Porter S, Kovacs I (1997) The response of the major crop and pasture pest, the redlegged earth mite (Halotydeus destructor) to pesticides: dose-response curves and evidence of tolerance. Experimental & Applied Acarology 21, 151–162.
The response of the major crop and pasture pest, the redlegged earth mite (Halotydeus destructor) to pesticides: dose-response curves and evidence of tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVals7g%3D&md5=30b8b9e8effa0697056834fc013869bfCAS |

Jeschke P, Nauen R (2008) Neonicotinoids – from zero to hero in insecticide chemistry. Pest Management Science 64, 1084–1098.
Neonicotinoids – from zero to hero in insecticide chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlans73N&md5=507aac36be9aca56bdf29f85173eb348CAS | 18712805PubMed |

Kerns D, Gaylor M (1992) Insecticide resistance in field populations of the cotton aphid (Homoptera: Aphididae). Journal of Economic Entomology 85, 1–8.
Insecticide resistance in field populations of the cotton aphid (Homoptera: Aphididae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtFyqs70%3D&md5=fcb1fd51cc6db83ae2df80d500846fe6CAS |

Mokbel ES, Mohamed AI (2009) Development of resistance in field strain of Aphis craccivora to the dinotefuran insecticides from the new class neonicotinoids and its effect on some enzymes content. Egypt Academic Journal of Biological Science 1, 65–69.

Murray DAH, Clarke MB, Ronning DA (2013) Estimating invertebrate pest losses in six major Australian grain crops. Australian Journal of Entomology 52, 227–241.
Estimating invertebrate pest losses in six major Australian grain crops.Crossref | GoogleScholarGoogle Scholar |

Nauen R, Elbert A (2003) European monitoring of resistance to insecticides in Myzus persicae and Aphid gossypii (Hemiptera: Aphididae) with special reference to imidacloprid. Bulletin of Entomological Research 93, 47–54.
European monitoring of resistance to insecticides in Myzus persicae and Aphid gossypii (Hemiptera: Aphididae) with special reference to imidacloprid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Gmu7Y%3D&md5=b6daf0890f99a982f1421a6e5b8cb962CAS | 12593682PubMed |

Robertson JL, Savin NE, Preisler HK, Russell RM (2007) ‘Bioassays with Arthropods.’ 2nd edn. (CRC Press: Boca Raton, FL)

Roush R, McKenzie J (1987) Ecological genetics of insecticide and acaricide resistance. Annual Review of Entomology 32, 361–380.
Ecological genetics of insecticide and acaricide resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtFKkt70%3D&md5=3a4725c7de7f0a4d47a7558b7bebf95bCAS | 3545056PubMed |

Syrett P, Penman D (1980) Studies of insecticide toxicity to lucerne aphids and their predators. New Zealand Journal of Agricultural Research 23, 575–580.
Studies of insecticide toxicity to lucerne aphids and their predators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksFKhu7g%3D&md5=051747e8dc6e904db978938694c90aa5CAS |

Tang L, Wu J, Ali S, Ren S (2013) Establishment of baseline toxicity data to different insecticides for Aphis craccivora (Koch) and Rhopalosiphum maidis (Fitch) (Homoptera: Aphididae) by glass tube residual film technique. Pakistan Journal of Zoology 45, 411–415.

Townsend P (1980) Toxicity studies of insecticides on lucerne aphids and their predators. Doctoral Dissertation, University of Canterbury, New Zealand.

Uijan AA, Khanzada M, Shazad S (2014) Insecticide and papaya leaf extract toxicity to mustard aphid (Liphaphis erysimi Kal.). Journal of Agri-Food and Applied Sciences 2, 45–48.

Umina P (2007) Pyrethroid resistance discovered in a major agricultural pest in southern Australia: the redlegged earth mite Halotydeus destructor (Acari: Penthalidae). Pest Management Science 63, 1185–1190.
Pyrethroid resistance discovered in a major agricultural pest in southern Australia: the redlegged earth mite Halotydeus destructor (Acari: Penthalidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWrsbrJ&md5=0654df701bc512f25f3da3fd310a2ed4CAS | 17708512PubMed |

Umina P, Edwards OR, Carson P, Van Rooyen A, Anderson A (2014) High levels of resistance to carbamate and pyrethroid chemicals widespread in Australian Myzus persicae (Hemiptera: Aphididae) populations. Journal of Economic Entomology 107, 1626–1638.
High levels of resistance to carbamate and pyrethroid chemicals widespread in Australian Myzus persicae (Hemiptera: Aphididae) populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1yit7nJ&md5=b95f3643adaad19f6cfa172333737082CAS | 25195456PubMed |

Valenzuela I, Hoffmann A (2014) Effects of aphid feeding and associated virus injury on grain crops in Australia. Austral Entomology 54, 292–305.
Effects of aphid feeding and associated virus injury on grain crops in Australia.Crossref | GoogleScholarGoogle Scholar |

Zhang W, Jiang F, Ou J (2011) Global pesticide consumption and pollution: with China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences 1, 125–144.