Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Identification of quantitative trait loci for agronomic traits contributed by a barley (Hordeum vulgare) Mediterranean landrace

Ridha Boudiar A B , Ana M. Casas A C , Carlos P. Cantalapiedra A , M. Pilar Gracia A and Ernesto Igartua A
+ Author Affiliations
- Author Affiliations

A Estación Experimental de Aula Dei, EEAD-CSIC, Avenida Montañana, 1005, 50059 Zaragoza, Spain.

B Current address: Agronomy Department, Ferhat Abbas University, Setif, Algeria.

C Corresponding author. Email: acasas@eead.csic.es

Crop and Pasture Science 67(1) 37-46 https://doi.org/10.1071/CP15149
Submitted: 15 May 2015  Accepted: 25 August 2015   Published: 14 January 2016

Abstract

Some Spanish barley (Hordeum vulgare L.) landraces perform better than modern cultivars at low-production sites. The objective of this study was to identify favourable quantitative trait loci (QTLs) for interesting agronomic traits contributed by the landrace SBCC073. To achieve this objective, a population of 100 BC1F5 lines was derived from the cross between the elite cultivar Orria, with high productivity, and the Spanish landrace SBCC073, which was the best performer in low-production trials. The population was evaluated in field trials for 3 years (2011, 2013, and 2014) in Zaragoza, Spain. The population was genotyped with a DArTseq genotyping-by-sequencing assay. A genetic linkage map was developed by using markers of four flowering-time genes and 1227 single-nucleotide polymorphisms of good quality. The genetic map resulted in 11 linkage groups, covering a total distance of 871.1 cM. Five QTLs for grain yield were detected on 2H.1, 4H, 5H and 6H.2. Alleles from SBCC073 contributed to increased yield in three of them. A region at the end of chromosome 5H contains favourable alleles for early vigour, higher grain yield and earlier flowering, all derived from SBCC073. Alleles from Orria contributed to increasing grain yield and simultaneously to reducing plant height on the same region of 6H.2, and to increasing 1000-kernel weight on chromosomes 3H and 5H.

Additional keywords: adaptation, breeding, drought, genetic resource, introgression, SNPs.


References

Atkinson JA, Wingen LU, Griffiths M, Pound MP, Gaju O, Foulkes MJ, Gouis JL, Griffiths S, Bennett MJ, King J, Wells DM (2015) Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. Journal of Experimental Botany 66, 2283–2292.
Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVOitLfI&md5=9ed168f079d82ca539552b0722fbcccfCAS | 25740921PubMed |

Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A (1995) Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 90, 294–302.
Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1CjsL8%3D&md5=9029fa0f7b69b42e72dfff1712fe635dCAS | 24173906PubMed |

Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H. spontaneum 41-1. Theoretical and Applied Genetics 107, 1215–1225.
QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H. spontaneum 41-1.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srivVSiug%3D%3D&md5=bc4cd4fab5710506af5dee2b9832132fCAS | 12898030PubMed |

Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1996) Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity 77, 64–73.
Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkslelsbo%3D&md5=6a87afc10bb9568d3b2360ac055e8edaCAS |

Borràs-Gelonch G, Slafer GA, Casas AM, van Eeuwijk F, Romagosa I (2010) Control of pre-heading phases and other traits related to development in a double-haploid barley (Hordeum vulgare L.) population. Field Crops Research 119, 36–47.
Control of pre-heading phases and other traits related to development in a double-haploid barley (Hordeum vulgare L.) population.Crossref | GoogleScholarGoogle Scholar |

Boudiar R (2014) Identification of QTL for agronomic traits in a backcross involving a barley landrace. MSc Thesis, IAMZ-CIHEAM, Zaragoza, Spain.

Bowman JGP, Blake TK, Surber LMM, Habernicht DK, Bockelman H (2001) Feed-quality variation in the barley core collection of the USDA National Small Grains Collection. Crop Science 41, 863–870.
Feed-quality variation in the barley core collection of the USDA National Small Grains Collection.Crossref | GoogleScholarGoogle Scholar |

Ceccarelli S (1996) Positive interpretation of genotype by environment interactions in relation to sustainability and biodiversity. In ‘Plant adaptation and crop improvement’. (Eds M Cooper, GL Hammer) pp. 467–486. (CABI Publishing: Wallingford, UK)

Ceccarelli S, Grando S, Van Leur JAG (1987) Genetic diversity in barley landraces from Syria and Jordan. Euphytica 36, 389–405.
Genetic diversity in barley landraces from Syria and Jordan.Crossref | GoogleScholarGoogle Scholar |

Ceccarelli S, Acevedo E, Grando S (1991) Breeding for yield stability in unpredictable environments: single traits, interaction between traits, and architecture of genotypes. Euphytica 56, 169–185.
Breeding for yield stability in unpredictable environments: single traits, interaction between traits, and architecture of genotypes.Crossref | GoogleScholarGoogle Scholar |

Ceccarelli S, Grando S, Van Leur JAG (1995) Barley landraces in the Fertile Crescent offer new breeding options for stress environments. Diversity 11, 112–113.

Ceccarelli S, Grando S, Impiglia A (1998) Choice of selection strategy in breeding barley for stress environments. Euphytica 103, 307–318.
Choice of selection strategy in breeding barley for stress environments.Crossref | GoogleScholarGoogle Scholar |

Ceccarelli S, Grando S, Tutwiler R, Baha J, Martini AM, Salahieh H, Goodchild A, Michael M (2000) A methodological study on participatory barley breeding. I. Selection phase. Euphytica 111, 91–104.
A methodological study on participatory barley breeding. I. Selection phase.Crossref | GoogleScholarGoogle Scholar |

Chen GD, Liu YX, Wei YM, McIntyre CL, Zhou MX, Zheng YL, Liu CJ (2013) Major QTL for Fusarium crown rot resistance in a barley landrace. Theoretical and Applied Genetics 126, 2511–2520.
Major QTL for Fusarium crown rot resistance in a barley landrace.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCqu7nL&md5=34e94bffc9092e5a7b525b4f3138666eCAS | 23824201PubMed |

Chloupek O, Forster BP, Thomas WTB (2006) The effect of semi-dwarf genes on root system size in field-grown barley. Theoretical and Applied Genetics 112, 779–786.
The effect of semi-dwarf genes on root system size in field-grown barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVanurc%3D&md5=eb8498a8ec5846d635d676668d422ea2CAS | 16425022PubMed |

Comadran J, Russell J, Eeuwijk FA, Ceccarelli S, Grando S, Baum M, Stanca AM, Pecchioni N, Mastrangelo AM, Akar T, Al-Yassin A, Benbelkacem A, Choumane W, Ouabbou H, Dahan R, Bort J, Araus JL, Pswarayi A, Romagosa I, Hackett CA, Thomas WTB (2008) Mapping adaptation of barley to droughted environments. Euphytica 161, 35–45.
Mapping adaptation of barley to droughted environments.Crossref | GoogleScholarGoogle Scholar |

Comadran J, Russell JR, Booth A, Pswarayi A, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, van Eeuwijk FA, Thomas WTB, Romagosa I (2011) Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theoretical and Applied Genetics 122, 1363–1373.
Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MvivFSqsQ%3D%3D&md5=53b92099ce1d4579b92994006bdf80b6CAS | 21279625PubMed |

Cuesta-Marcos A, Casas AM, Yahiaoui S, Gracia MP, Lasa JM, Igartua E (2008a) Joint analysis for heading date QTL in small interconnected barley populations. Molecular Breeding 21, 383–399.
Joint analysis for heading date QTL in small interconnected barley populations.Crossref | GoogleScholarGoogle Scholar |

Cuesta-Marcos A, Igartua E, Ciudad FJ, Codesal P, Russell JR, Molina-Cano JL, Moralejo M, Szűcs P, Gracia MP, Lasa JM, Casas AM (2008b) Heading date QTL in a spring × winter barley cross evaluated in Mediterranean environments. Molecular Breeding 21, 455–471.
Heading date QTL in a spring × winter barley cross evaluated in Mediterranean environments.Crossref | GoogleScholarGoogle Scholar |

Cuesta-Marcos A, Casas AM, Hayes PM, Gracia MP, Lasa JM, Ciudad F, Codesal P, Molina-Cano JL, Igartua E (2009) Yield QTL affected by heading date in Mediterranean grown barley. Plant Breeding 128, 46–53.
Yield QTL affected by heading date in Mediterranean grown barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1Kns74%3D&md5=631d57af27ac861b09c89fe9b6976558CAS |

Demissie A, Bjørnstad A (1997) Geographical, altitude and agro-ecological differentiation of isozyme and hordein genotypes of landrace barleys from Ethiopia: implications to germplasm conservation. Genetic Resources and Crop Evolution 44, 43–55.
Geographical, altitude and agro-ecological differentiation of isozyme and hordein genotypes of landrace barleys from Ethiopia: implications to germplasm conservation.Crossref | GoogleScholarGoogle Scholar |

Fischbeck G (2003) Diversification through breeding. In ‘Diversity in barley’. (Eds R von Bothmer, T van Hintum, H Knüpffer, K Sato) pp. 147–169. (Elsevier: New York)

Forster BP, Ellis RP, Thomas WTB, Newton AC, Tuberosa R, This D, El-Enein RA, Bahri MH, Ben Salem M (2000) The development and application of molecular markers for abiotic stress tolerance in barley. Journal of Experimental Botany 51, 19–27.
The development and application of molecular markers for abiotic stress tolerance in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpslKjsw%3D%3D&md5=091c3c2b398bbececc57cfd6a62d7440CAS | 10938792PubMed |

Francia E, Tondelli A, Rizza F, Badeck FW, Nicosia OLD, Akar T, Grando S, Al-Yassin A, Benbelkacem A, Thomas WTB, von Eeuwijk F, Romagosa I, Stanca AM, Pecchioni N (2011) Determinants of barley grain yield in a wide range of Mediterranean environments. Field Crops Research 120, 169–178.
Determinants of barley grain yield in a wide range of Mediterranean environments.Crossref | GoogleScholarGoogle Scholar |

García del Moral LF, Ramos JM, Recalde L (1984) Tillering dynamics of winter barley as influenced by cultivar and nitrogen fertilizer: A field study. Crop Science 24, 179–181.
Tillering dynamics of winter barley as influenced by cultivar and nitrogen fertilizer: A field study.Crossref | GoogleScholarGoogle Scholar |

García del Moral LF, Ramos JM, Garcia del Moral MB, Jimenez-Tejada MP (1991) Ontogenetic approach to grain production in spring barley based on path-coefficient analysis. Crop Science 31, 1179–1185.
Ontogenetic approach to grain production in spring barley based on path-coefficient analysis.Crossref | GoogleScholarGoogle Scholar |

George TS, Brown LK, Ramsay L, White PJ, Newton AC, Bengough AG, Russell J, Thomas WTB (2014) Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytologist 203, 195–205.
Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFWkt7Y%3D&md5=31100209c05e11ee770a23bd75df432dCAS | 24684319PubMed |

Hadado TT, Rau D, Bitocchi E, Papa R (2009) Genetic diversity of barley (Hordeum vulgare L.) landraces from the central highlands of Ethiopia: comparison between the ‘Belg’ and ‘Meher’ growing seasons using morphological traits. Genetic Resources and Crop Evolution 56, 1131–1148.
Genetic diversity of barley (Hordeum vulgare L.) landraces from the central highlands of Ethiopia: comparison between the ‘Belg’ and ‘Meher’ growing seasons using morphological traits.Crossref | GoogleScholarGoogle Scholar |

Hofmann K, Silvar C, Casas AM, Herz M, Büttner B, Gracia MP, Bruno Contreras MB, Wallwork H, Igartua E, Schweizer G (2013) Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces. Theoretical and Applied Genetics 126, 3091–3102.
Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCqtrnE&md5=93ff104c5e0409ecfe52ef726eb9d00fCAS | 24068343PubMed |

Igartua E, Gracia MP, Lasa JM, Medina B, Molina-Cano JL, Montoya JL, Romagosa I (1998) The Spanish barley core collection. Genetic Resources and Crop Evolution 45, 475–481.
The Spanish barley core collection.Crossref | GoogleScholarGoogle Scholar |

Igartua E, Gracia MP, Lasa JM, Yahiaoui S, Casao C, Molina-Cano JL, Moralejo M, Montoya JL, Ciudad FJ, Kopahnke D, Ordon F, Karsai I, Szucs P, Casas AM (2008) Barley adaptation to Mediterranean conditions: Lessons learned from the Spanish landraces. In ‘Proceedings 10th International Barley Genetics Symposium’. Alexandria, Egypt. (Eds S Ceccarelli, S Grando) pp. 205–214. (ICARDA Publishing: Aleppo, Syria)

Igartua E, Mansour E, Cantalapiedra CP, Contreras-Moreira B, Gracia MP, López-Fuster P, Escribano J, Molina-Cano JL, Moralejo M, Ciudad FJ, Thomas WTB, Karsai I, Casas AM (2015) Selection footprints in barley breeding lines detected by combining genotyping-by-sequencing with reference genome information. Molecular Breeding 35,
Selection footprints in barley breeding lines detected by combining genotyping-by-sequencing with reference genome information.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1altbk%3D&md5=2b56bb884b9cf9a135f20a7a8583af1eCAS |

Inostroza L, del Pozo A, Matus I, Castillo D, Hayes P, Machado S, Corey A (2009) Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Molecular Breeding 23, 365–376.
Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background.Crossref | GoogleScholarGoogle Scholar |

Jefferies SP, King BJ, Barr AR, Warner P, Logue SJ, Langridge P (2003) Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breeding 122, 52–56.
Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1ynu7s%3D&md5=2ab19453fead3c09a22771f796766baeCAS |

Knüpffer H, van Hintum T (2003) Summarised diversity—the barley core collection. In ‘Diversity in barley’. (Eds R von Bothmer, T van Hintum, H Knüpffer, K Sato) pp. 259–267. (Elsevier: New York)

Lakew B, Semeane Y, Alemayehu F, Gebre H, Grando S, van Leur JA, Ceccarelli S (1997) Exploiting the diversity of barley landraces in Ethiopia. Genetic Resources and Crop Evolution 44, 109–116.
Exploiting the diversity of barley landraces in Ethiopia.Crossref | GoogleScholarGoogle Scholar |

Landjeva S, Lohwasser U, Börner A (2010) Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth. Euphytica 171, 129–143.
Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth.Crossref | GoogleScholarGoogle Scholar |

Lasa JM, Igartua E, Ciudad FJ, Codesal P, Garcia EV, Gracia MP, Medina B, Romagosa I, Molina-Cano JL, Montoya JL (2001) Morphological and agronomical diversity patterns in the Spanish barley core collection. Hereditas 135, 217–225.
Morphological and agronomical diversity patterns in the Spanish barley core collection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38vgtlChtA%3D%3D&md5=99259d56c7d39f9d1b720b1f7b514530CAS | 12152338PubMed |

Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 95, 221–227.
Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovVOns7w%3D&md5=e093477491abe0af0dcbeea5baab5cfaCAS | 16077740PubMed |

Locatelli A, Cuesta-Marcos A, Gutiérrez L, Hayes PM, Smith KP, Castro AJ (2013) Genome-wide association mapping of agronomic traits in relevant barley germplasm in Uruguay. Molecular Breeding 31, 631–654.
Genome-wide association mapping of agronomic traits in relevant barley germplasm in Uruguay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjs1yhurg%3D&md5=4f97c664d3e1d7b54d9d3f0396174e89CAS |

Loss SP, Siddique KHM (1994) Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Advances in Agronomy 52, 229–276.
Morphological and physiological traits associated with wheat yield increases in Mediterranean environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFertrs%3D&md5=c14b615c11c24f2294b49137f7983f44CAS |

Mansour E, Casas AM, Gracia MP, Molina-Cano JL, Moralejo M, Cattivelli L, Thomas WTB, Igartua E (2014) Quantitative trait loci for agronomic traits in an elite barley population for Mediterranean conditions. Molecular Breeding 33, 249–265.
Quantitative trait loci for agronomic traits in an elite barley population for Mediterranean conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Gmtbs%3D&md5=b8fbac1fea5e155d80366deca8b75e82CAS |

Marquez-Cedillo LA, Hayes PM, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich SE, Wesenberg DM (2001) QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theoretical and Applied Genetics 103, 625–637.
QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1GmtLw%3D&md5=06cffcf0fcdfa86a873a992237911df5CAS |

Miralles DJ, Slafer GA (2007) Sink limitations to yield in wheat: how could it be reduced? The Journal of Agricultural Science 145, 139–149.
Sink limitations to yield in wheat: how could it be reduced?Crossref | GoogleScholarGoogle Scholar |

Naz AA, Ehl A, Pillen K, Léon J (2012) Validation for root-related quantitative trait locus effect of wild origin in the cultivated background of barley (Hordeum vulgare L.). Plant Breeding 131, 392–398.
Validation for root-related quantitative trait locus effect of wild origin in the cultivated background of barley (Hordeum vulgare L.).Crossref | GoogleScholarGoogle Scholar |

Nevo E (1992) Origin, evolution, population genetics and resources for breeding of wild barley Hordeum spontaneum in Fertile Crescent. In ‘Barley genetics, biochemistry, molecular biology and biotechnology’. (Ed. PR Sherwy) pp. 19–43. (CAB International: Wallingford, UK)

Pang J, Palta JA, Rebetzke GJ, Milroy SP (2014) Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth. Functional Plant Biology 41, 215–222.
Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtFOlsQ%3D%3D&md5=b6991764dcb3524a7b887371f60d905fCAS |

Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM (2009) ‘Genstat for Windows. Introduction.’ 12th edn (VSN International: Hemel Hempstead, UK)

Ponce-Molina LJ, Casas AM, Gracia PM, Silvar C, Mansour E, Thomas WB, Schweizer G, Herz M, Igartua E (2012) Quantitative trait loci and candidate loci for heading date in a large population of wide barley cross. Crop Science 52, 2469–2480.
Quantitative trait loci and candidate loci for heading date in a large population of wide barley cross.Crossref | GoogleScholarGoogle Scholar |

Pswarayi A, Van Eeuwijk FA, Ceccarelli S, Grando S, Comadran J, Russell JR, Francia E, Pecchioni N, Li Destri O, Akar T, Al-Yassin A, Benbelkacem A, Choumane W, Karrou M, Ouabbou H, Bort J, Araus JL, Molina-Cano JL, Thomas WTB, Romagosa I (2008) Barley adaptation and improvement in the Mediterranean basin. Plant Breeding 127, 554–560.
Barley adaptation and improvement in the Mediterranean basin.Crossref | GoogleScholarGoogle Scholar |

Rebetzke GJ, Ellis MH, Bonnett DG, Richards RA (2007) Molecular mapping of genes for coleoptiles growth in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 114, 1173–1183.
Molecular mapping of genes for coleoptiles growth in bread wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslWnsrc%3D&md5=58b7d044faeaadc3ba1b779670a10216CAS | 17294164PubMed |

Ren R, Ray R, Li P, Xu J, Zhang M, Liu G, Yao X, Kilian A, Yang X (2015) Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a genetic population derived from a cross between feral and cultivated-type watermelon. Molecular Genetics and Genomics
Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a genetic population derived from a cross between feral and cultivated-type watermelon.Crossref | GoogleScholarGoogle Scholar | 25702268PubMed |

Richards RA, Watt M, Rebetzke GJ (2007) Physiological traits and cereal germplasm for sustainable agricultural systems. Euphytica 154, 409–425.
Physiological traits and cereal germplasm for sustainable agricultural systems.Crossref | GoogleScholarGoogle Scholar |

Royo C, Nazco R, Villegas D (2014) The climate of the zone of origin of Mediterranean durum wheat (Triticum durum Desf.) landraces affects their agronomic performance. Genetic Resources and Crop Evolution 61, 1345–1358.
The climate of the zone of origin of Mediterranean durum wheat (Triticum durum Desf.) landraces affects their agronomic performance.Crossref | GoogleScholarGoogle Scholar |

Russell JR, Booth A, Fuller JD, Baum M, Ceccarelli S, Grando S, Powell W (2003) Patterns of polymorphism detected in the chloroplast and nuclear genomes of barley landraces sampled from Syria and Jordan. Theoretical and Applied Genetics 107, 413–421.
Patterns of polymorphism detected in the chloroplast and nuclear genomes of barley landraces sampled from Syria and Jordan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslSis7Y%3D&md5=87708080533db7e3b4e07ae9f13e26d2CAS | 12845432PubMed |

Sameri M, Takeda K, Komatsuda T (2006) Quantitative trait loci controlling agronomic traits in recombinant inbred lines from a cross of oriental- and occidental-type barley cultivars. Breeding Science 56, 243–252.
Quantitative trait loci controlling agronomic traits in recombinant inbred lines from a cross of oriental- and occidental-type barley cultivars.Crossref | GoogleScholarGoogle Scholar |

Silvar C, Casas AM, Kopahnke D, Habekus A, Schweizer G, Gracia MP, Lasa JM, Ciudad FJ, Molina-Cano JL, Igartua E, Ordon F (2010) Screening the Spanish barley core collection for disease resistance. Plant Breeding 129, 45–52.
Screening the Spanish barley core collection for disease resistance.Crossref | GoogleScholarGoogle Scholar |

Slafer GA, Abeledo LG, Miralles DJ, Gonzalez FG, Whitechurch EM (2001) Photoperiod sensitivity during stem elongation as an avenue to raise potential yield in wheat. In ‘Wheat in a global environment’. pp. 487–496. (Springer: Dordrecht, The Netherlands)

Tondelli A, Francia E, Visioni A, Comadran J, Mastrangelo AM, Akar T, Al-Yassin A, Ceccarelli S, Grando S, Benbelkacem A, van Eeuwijk FA, Thomas WTB, Stanca AM, Romagosa I, Pecchioni N (2014) QTLs for barley yield adaptation to Mediterranean environments in the ‘Nure’ × ‘Tremois’ biparental population. Euphytica 197, 73–86.
QTLs for barley yield adaptation to Mediterranean environments in the ‘Nure’ × ‘Tremois’ biparental population.Crossref | GoogleScholarGoogle Scholar |

van Ooijen JW (2006) ‘JoinMap 4, software for the calculation of genetics linkage maps in experimental populations.’ (Kyazma B.V.: Wageningen, The Netherlands)

Varshney RK, Paulo MJ, Grando S, Van Eeuwijk FA, Keizer LCP, Guo P, Ceccarelli S, Kilian A, Baum M, Graner A (2012) Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). Field Crops Research 126, 171–180.
Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.).Crossref | GoogleScholarGoogle Scholar |

von Korff M, Grando S, Del Greco A, This D, Baum M, Ceccarelli S (2008) Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theoretical and Applied Genetics 117, 653–669.
Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1crjtFOrtQ%3D%3D&md5=29fe608ef741b57815d92adaaf4dc9b5CAS | 18618094PubMed |

Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity 93, 77–78.
MapChart: Software for the graphical presentation of linkage maps and QTLs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlOntrw%3D&md5=ffd40406741e95a8b496eab745d52d49CAS | 12011185PubMed |

Wu Y, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the Minimum Spanning Tree of a graph. PLOS Genetics 4, e1000212
Efficient and accurate construction of genetic linkage maps from the Minimum Spanning Tree of a graph.Crossref | GoogleScholarGoogle Scholar | 18846212PubMed |

Yahiaoui S, Igartua E, Moralejo M, Ramsay L, Molina-Cano JL, Ciudad FJ, Lasa JM, Gracia MP, Casas AM (2008) Patterns of genetic and eco-geographical diversity in Spanish barleys. Theoretical and Applied Genetics 116, 271–282.
Patterns of genetic and eco-geographical diversity in Spanish barleys.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2sjlsVCmsw%3D%3D&md5=ed23f6fe6cb78890ec68f3bbe2f809b9CAS | 18026712PubMed |

Yahiaoui S, Cuesta-Marcos A, Gracia MP, Medina B, Lasa JM, Casas AM, Ciudad FJ, Montoya JL, Moralejo M, Molina-Cano JL, Igartua E (2014) Spanish barley landraces outperform modern cultivars at low productivity sites. Plant Breeding 133, 218–226.
Spanish barley landraces outperform modern cultivars at low productivity sites.Crossref | GoogleScholarGoogle Scholar |

Yau SK, Ortiz-Ferrara G, Srivastava JP (1991) Classification of bread wheat-growing environments based on differential yield responses. Crop Science 31, 571–576.
Classification of bread wheat-growing environments based on differential yield responses.Crossref | GoogleScholarGoogle Scholar |

Zhang L, Richards RA, Condon AG, Liu DC, Rebetzke GJ (2015) Recurrent selection for wider seedling leaves increases early biomass and leaf area in wheat (Triticum aestivum L.). Journal of Experimental Botany 66, 1215–1226.
Recurrent selection for wider seedling leaves increases early biomass and leaf area in wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVWhtrfI&md5=cf713ffd6a571b436934fb2749809190CAS | 25504641PubMed |