Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Effect of phenotypic recurrent selection on genetic diversity of non-dormant multifoliolate lucerne (Medicago sativa L.) populations

A. Odorizzi A D , E. M. C. Mamani B , P. Sipowicz B , B. Julier C , J. Gieco B and D. Basigalup A
+ Author Affiliations
- Author Affiliations

A Mejoramiento Genético de Alfalfa, INTA-EEA Manfredi, Manfredi, Córdoba, Argentina.

B Biotecnologia en Cultivos, INTA-EEA Manfredi, Manfredi, Córdoba, Argentina.

C Unité de Recherche Pluridisciplinaire Prairies et Plantes Fourragères, INRA, UR4, Lusignan, France.

D Corresponding author. Email: odorizzi.ariel@inta.gob.ar

Crop and Pasture Science 66(11) 1190-1196 https://doi.org/10.1071/CP14280
Submitted: 30 September 2014  Accepted: 8 July 2015   Published: 29 October 2015

Abstract

The nutritional quality of lucerne (alfalfa, Medicago sativa L.) plants correlates positively with the presence of multifoliolate (MF) leaves. Using phenotypic recurrent selection, we developed populations with an increased percentage of MF expression from 6.7% in the original population (C0) to 77.7% in the fourth cycle (C4). The effect of selection on genetic diversity within and among populations was evaluated. The populations C0 and C4 were represented by 40 plants genotyped by using 25 simple sequence repeats (SSR). The number of alleles per locus was large in both C0 and C4, averaging 6.28. The within-population genetic diversity (HE) overall estimation was 0.723 for C0 and 0.726 for C4, the absence of significant difference between the two populations indicating that the genetic diversity was as large in C4 as in C0. The Nei’s population differentiation (GST) overall estimation was 0.013, meaning that only 1.3% of the total genetic diversity was between populations and 98.7% was within populations. An efficient selection process was conducted without any increase in inbreeding or genetic drift.

Additional keywords: autotetraploidy, forage legume, heterozygosity, quality improvement, microsatellites.


References

Azizi MR (1980) Inheritance of the multifoliolate trait in tetraploid alfalfa, Medicago sativa L. PhD Thesis, Graduate College, University of Arizona, Tucson, AZ, USA.

Bagavathiannan MV, Julier B, Barre P, Gulden RH, Van Acker RC (2010) Genetic diversity of feral alfalfa (Medicago sativa L.) populations occurring in Manitoba, Canada and comparison with alfalfa cultivars: an analysis using SSR markers and phenotypic traits. Euphytica 173, 419–432.
Genetic diversity of feral alfalfa (Medicago sativa L.) populations occurring in Manitoba, Canada and comparison with alfalfa cultivars: an analysis using SSR markers and phenotypic traits.Crossref | GoogleScholarGoogle Scholar |

Balzarini MG, Di Rienzo JA (2011) Info-Gen. FCA, Universidad Nacional de Córdoba, Argentina. www.info-gen.com.ar

Barnes DK, Hanson CH (1967) An illustrated summary of genetic traits in tetraploid and diploid alfalfa. Technical Bulletin No. 1370. United States Department of Agriculture-Agricultural Research Service, Washington, DC.

Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry 196, 80–83.
Fast and sensitive silver staining of DNA in polyacrylamide gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXks1Ortr8%3D&md5=c83fbf75093abf38985855e35cca2ad9CAS | 1716076PubMed |

Bingham ET (1964) A genetical and morphological investigation of multifoliolate leaves of alfalfa, Medicago sativa L. PhD Thesis, Cornell University, Ithaca, NY, USA.

Bingham ET, Murphy RP (1965) Breeding and morphological studies on multifoliolate selections of alfalfa Medicago sativa L. Crop Science 5, 233–235.
Breeding and morphological studies on multifoliolate selections of alfalfa Medicago sativa L.Crossref | GoogleScholarGoogle Scholar |

Brick MA, Dobrenz AK, Schonhorst MH (1976) Transmittance of the multifoliolate leaf characteristics into non-dormant alfalfa. Agronomy Journal 68, 134–136.
Transmittance of the multifoliolate leaf characteristics into non-dormant alfalfa.Crossref | GoogleScholarGoogle Scholar |

Brummer EC (1999) Capturing heterosis in forage crop cultivar development. Crop Science 39, 943–954.
Capturing heterosis in forage crop cultivar development.Crossref | GoogleScholarGoogle Scholar |

Brummer EC, Kochert G, Bouton JH (1991) RFLP variation in diploid and tetraploid alfalfa. Theoretical and Applied Genetics 83, 89–96.
RFLP variation in diploid and tetraploid alfalfa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c7jvF2jtA%3D%3D&md5=30fe7ec6f37c736123082c10d4521f19CAS | 24202261PubMed |

Carelli M, Gnocchi G, Scotti C (2009) Alfalfa germplasm from Sahara oasis: Characterization by means of bio-agronomic traits and SSR markers. Plant Breeding 128, 271–277.
Alfalfa germplasm from Sahara oasis: Characterization by means of bio-agronomic traits and SSR markers.Crossref | GoogleScholarGoogle Scholar |

Creste S, Tulmann Neto A, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Molecular Biology Reporter 19, 299–306.
Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhslSlt78%3D&md5=aa671fa719d1d690c8c16257e7c9bbe8CAS |

Crochemore ML, Huyghe C, Kerlan MC, Durand F, Julier B (1996) Partitioning and distribution of RAPD variation in a set of populations of the Medicago sativa complex. Agronomie 16, 421–432.
Partitioning and distribution of RAPD variation in a set of populations of the Medicago sativa complex.Crossref | GoogleScholarGoogle Scholar |

Di Rienzo JA, Guzmán AW, Casanoves F (2002) A multiple-comparisons method based on the distribution of the root node distance of a binary tree. Journal of Agricultural, Biological & Environmental Statistics 7, 129–142.
A multiple-comparisons method based on the distribution of the root node distance of a binary tree.Crossref | GoogleScholarGoogle Scholar |

Diwan N, Bhagwat AA, Bauchan GR, Cregan PB (1997) Simple sequence repeat DNA markers in alfalfa and perennial and annual Medicago species. Genome 40, 887–895.
Simple sequence repeat DNA markers in alfalfa and perennial and annual Medicago species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVOgsA%3D%3D&md5=ad6ae2431f32d09842d81f50af37eb15CAS | 18464874PubMed |

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 11–15.

Elliot FC, Johnson IJ, Schonhorst MH (1972) Breeding for forage yield and quality. In ‘Alfalfa science and technology’. (Ed. CH Hanson) pp. 319–333. (American Society of Agronomy: Madison, WI, USA)

Etzel MG, Volenec JJ, Vorst JJ (1988) Leaf morphology, shoot growth, and gas exchange of multifoliolate alfalfa phenotypes. Crop Science 28, 263–269.
Leaf morphology, shoot growth, and gas exchange of multifoliolate alfalfa phenotypes.Crossref | GoogleScholarGoogle Scholar |

Falahati-Anbaran M, Habashi A, Esfahany M, Mohammadi S, Ghareyazie B (2007) Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centers of origin of the species. Journal of Genetics 86, 59–63.
Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centers of origin of the species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFKhtr0%3D&md5=28e073ee0200f13bfe00a9d5637f9560CAS | 17656850PubMed |

Falke KC, Flachenecker C, Melchinger AE, Piepho HP, Maurer HP, Frisch M (2007) Temporal change in allele frequencies in two European F2 flint maize populations under modified recurrent full-sib selection. Theoretical and Applied Genetics 114, 765–776.
Temporal change in allele frequencies in two European F2 flint maize populations under modified recurrent full-sib selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVOlt74%3D&md5=aff64d1337ab1e04fee457833686b051CAS | 17322961PubMed |

Ferguson JE, Murphy RP (1973) Comparison of trifoliolate and multifoliolate phenotypes of alfalfa (Medicago sativa L.). Crop Science 13, 463–465.
Comparison of trifoliolate and multifoliolate phenotypes of alfalfa (Medicago sativa L.).Crossref | GoogleScholarGoogle Scholar |

Flajoulot S, Ronfort J, Baudouin P, Barre P, Huguet T, Huyghe C, Julier B (2005) Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program, using SSR markers. Theoretical and Applied Genetics 111, 1420–1429.
Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program, using SSR markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1aitL%2FM&md5=4c21dd72911167b62178b806daa9af3eCAS | 16151797PubMed |

Fulkerson RS (1973) Protein supplements from forage legumes. Factsheet, Ontario Ministry of Agriculture and Food, Canada.

Ghérardi M, Mangin B, Goffinet B, Bonnet D, Huguet T (1998) A method to measure genetic distance between allogamous populations of alfalfa (Medicago sativa) using RAPD molecular markers. Theoretical and Applied Genetics 96, 406–412.
A method to measure genetic distance between allogamous populations of alfalfa (Medicago sativa) using RAPD molecular markers.Crossref | GoogleScholarGoogle Scholar | 24710879PubMed |

Herrmann D, Barre P, Santoni S, Julier B (2010a) Association of a CONSTANT-LIKE gene to flowering and height in autotetraploid alfalfa. Theoretical and Applied Genetics 121, 865–876.
Association of a CONSTANT-LIKE gene to flowering and height in autotetraploid alfalfa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVahtrjE&md5=5b1c845996caa750841257c347bdcf6eCAS | 20473652PubMed |

Herrmann D, Flajoulot S, Julier B (2010b) Sample size for diversity studies in tetraploid alfalfa (Medicago sativa) based on codominantly coded SSR markers. Euphytica 171, 441–446.
Sample size for diversity studies in tetraploid alfalfa (Medicago sativa) based on codominantly coded SSR markers.Crossref | GoogleScholarGoogle Scholar |

Hittle CN, Miller DA, Jacobs JA (1958) Leaf-stem ratios of five varieties of alfalfa at varying stages of maturity. In ‘16th Alfalfa Improvement Conference’. Ithaca, New York. (North American Alfalfa Improvement Conference)

Jenczewski E, Prosperi JM, Ronfort J (1999) Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers and quantitative traits. American Journal of Botany 86, 677–687.
Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers and quantitative traits.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MnhtVKhtg%3D%3D&md5=a9a55b62980379b90f0a7f092542ce87CAS | 10330071PubMed |

Julier B (2009) LD4X: un logiciel informatique pour tester le déséquilibre de liaison entre marqueurs chez des espèces autotétraploïdes [Application]. ProdINRA. Available at: http://prodinra.inra.fr/record/190848

Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003) Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biology 3, 9
Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers.Crossref | GoogleScholarGoogle Scholar | 14683527PubMed |

Labombarda P, Pupilli F, Arcioni S (2000) Optimal population size for RFLP-assisted cultivar identification in alfalfa (Medicago sativa L.). Agronomie 20, 233–240.
Optimal population size for RFLP-assisted cultivar identification in alfalfa (Medicago sativa L.).Crossref | GoogleScholarGoogle Scholar |

Meirmans PG, Van Tienderen PH (2013) The effects of inheritance in tetraploids on genetic diversity and population divergence. Heredity 110, 131–137.
The effects of inheritance in tetraploids on genetic diversity and population divergence.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s7ptFKnsw%3D%3D&md5=0e9c63479faef9ba522c5aa6b275dc55CAS | 23211786PubMed |

Mengoni A, Ruggini C, Vendramin GG, Bazzicalupo M (2000a) Chloroplast microsatellite variations in tetraploid alfalfa. Plant Breeding 119, 509–512.
Chloroplast microsatellite variations in tetraploid alfalfa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1Wnug%3D%3D&md5=c1158faa408ed7cfbc9ffb127a490b50CAS |

Mengoni A, Gori A, Bazzicalupo M (2000b) Use of RAPD and microsatellite (SSR) variation to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa. Plant Breeding 119, 311–317.
Use of RAPD and microsatellite (SSR) variation to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFKis70%3D&md5=f3d5494d25b7b9b07432f3639ae30a14CAS |

Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America 88, 9828–9832.
Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xhs1emtw%3D%3D&md5=93df61a12e3b0ea52b5ac05a41efc882CAS | 1682921PubMed |

Morales Corts MR, Crespo Martinez MC (2000) Variation of PGM and IDH isozymes for identification of alfalfa varieties. Euphytica 112, 137–143.
Variation of PGM and IDH isozymes for identification of alfalfa varieties.Crossref | GoogleScholarGoogle Scholar |

Nagl N, Taski-Ajdukovic K, Barac G (2011) Estimation of the genetic diversity in tetraploid alfalfa populations based on RAPD markers for breeding purposes. International Journal of Molecular Sciences 12, 5449–5460.
Estimation of the genetic diversity in tetraploid alfalfa populations based on RAPD markers for breeding purposes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2ns7%2FI&md5=fe8de1b18a885a4ea0496c1b652c0007CAS | 21954370PubMed |

Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70, 3321–3323.
Analysis of gene diversity in subdivided populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c%2FlsFCrtQ%3D%3D&md5=2796b05976179bff8a24d817070223d3CAS | 4519626PubMed |

Nei M (1978) ‘Molecular evolutionary genetics.’ (Columbia University Press: New York)

Nei M (1987) ‘Molecular evolutionary genetics.’ (Columbia University Press: New York)

Noeparvar S, Valizadeh M, Monirifar H, Haghighi A, Darbani B (2008) Genetic diversity among and within alfalfa populations native to Azarbaijan based on RAPD analysis. Journal of Biological Research – Thessaloniki 10, 159–169.

Odorizzi A, Basigalup D, Arolfo V (2012) Yield and quality of extremely non-dormant alfalfa populations with high multifoliolate leaf expression. In ‘Joint Conference, North American Alfalfa Improvement Conference’. Ithaca, NY. Poster abstracts. (North American Alfalfa Improvement Conference) Available at: www.naaic.org/conf/2012Posters.php

Petolescu C, Ciulca S, Lazar A, Schitea M, Badea EM (2010) Intra-population genetic diversity in Romanian alfalfa cultivars as revealed by SSR markers. Romanian Biotechnological Letters 15, 107–112.

Pupilli F, Businelli S, Paolocci F, Scotti C, Damiani F, Arcioni S (1996) Extent of RFLP variability in tetraploid populations of alfalfa, Medicago sativa. Plant Breeding 115, 106–112.
Extent of RFLP variability in tetraploid populations of alfalfa, Medicago sativa.Crossref | GoogleScholarGoogle Scholar |

Pupilli F, Labombarda P, Scotti C, Arcioni S (2000) RFLP analysis allows for the identification of alfalfa ecotypes. Plant Breeding 119, 271–276.
RFLP analysis allows for the identification of alfalfa ecotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslyksbs%3D&md5=5944e35d5d14cbcc232bec7c437d70e5CAS |

R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: www.R-project.org/

Riday H, Brummer EC, Campbell TA, Luth D, Cazcarro PM (2003) Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata. Euphytica 131, 37–45.
Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1GlsLc%3D&md5=07193593d8d37dbe0c32c39d0911d3a5CAS |

Rotili P, Gnocchi G, Scotti C, Zannone L (1999) Some aspects of breeding methodology in alfalfa. In ‘The Alfalfa Genome. Conference Proceedings’. Madison, WI, USA. (North American Alfalfa Improvement Conference) Available at: www.naaic.org/TAG/TAGpapers/rotili/rotili.html

Şakiroğlu M, Doyle JJ, Brummer EC (2010) Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.). Theoretical and Applied Genetics 121, 403–415.
Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.).Crossref | GoogleScholarGoogle Scholar | 20352180PubMed |

Şakiroğlu M, Sherman-Broyles S, Story A, Moore KJ, Doyle JJ, Brummer EC (2012) Patterns of linkage disequilibrium and association mapping in diploid alfalfa (M. sativa L.). Theoretical and Applied Genetics 125, 577–590.
Patterns of linkage disequilibrium and association mapping in diploid alfalfa (M. sativa L.).Crossref | GoogleScholarGoogle Scholar | 22476875PubMed |

Sheaffer CC, McCaslin M, Volenec JJ, Cherney JH, Johnson KD, Woodward WT, Viands DR (1995) Multifoliolate leaf expression. Standard tests to characterize alfalfa cultivars. North American Alfalfa Improvement Conference. Available at: www.naaic.org/stdtests/multifol.htm

Tucak M, Popovic S, Cupic T, Grljusic S, Bolaric S, Kozumplik V (2008) Genetic diversity of alfalfa (Medicago spp.) estimated by molecular markers and morphological characters. Periodicum Biologorum 110, 243–249.

Tucak M, Popovic S, Cupic T, Grljusic S, Megli V, Jurkovic Z (2010) Efficiency of phenotypic and DNA markers for a genetic diversity study of alfalfa. Russian Journal of Genetics 46, 1314–1319.
Efficiency of phenotypic and DNA markers for a genetic diversity study of alfalfa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVegtb3E&md5=95ee46a90aaa007319251b46fa95bc97CAS |

Van Puyvelde K, Geert AV, Triest L (2010) ATetra, a new software program to analyse tetraploid microsatellite data: comparison with TETRA and TETRASAT. Molecular Ecology Resources 10, 331–334.
ATetra, a new software program to analyse tetraploid microsatellite data: comparison with TETRA and TETRASAT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFCksLs%3D&md5=f83832aa829964fd432af19f5b141988CAS | 21565028PubMed |

Volenec JJ, Cherney J (1990) Yield components, morphology and forage quality of multifoliolate alfalfa phenotypes. Crop Science 30, 1234–1238.
Yield components, morphology and forage quality of multifoliolate alfalfa phenotypes.Crossref | GoogleScholarGoogle Scholar |

Wright S (1978) ‘Evolution and the genetics of populations, Vol. IV. Variability within and among natural populations.’ (University of Chicago Press: Chicago, IL)

Zhi-Peng L, Gong-She L, Qing-Chuan Y (2007) A novel statistical method for assessing SSR variation in autotetraploid alfalfa (Medicago sativa L.). Genetics and Molecular Biology 30, 385–391.