Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress

Xian-Can Zhu A C , Feng-Bin Song A , Fu-Lai Liu B , Sheng-Qun Liu A and Chun-Jie Tian A
+ Author Affiliations
- Author Affiliations

A Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, P.R. China.

B Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup DK-2630, Denmark.

C Corresponding author. Email: zhuxiancan@neigae.ac.cn

Crop and Pasture Science 66(1) 62-70 https://doi.org/10.1071/CP14159
Submitted: 9 June 2014  Accepted: 18 August 2014   Published: 9 January 2015

Abstract

Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 25°C for 4 weeks and subsequently subjected to two temperature treatments (15°C, low temperature; 25°C, ambient control) for 2 weeks. Low-temperature stress significantly decreased AM colonisation, plant height and biomass. Total N content and activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase of AM plants were higher than those of non-AM plants. AM plants had a higher net photosynthetic rate (Pn) than non-AM plants, although low temperature inhibited the Pn. Compared with non-AM plants, AM plants exhibited higher leaf soluble sugars, reducing sugars, root sucrose and fructose contents, and sucrose phosphate synthase and amylase activities at low temperature. Moreover, low-temperature stress increased the C : N ratio in the leaves of maize plants, and AM colonisation decreased the root C : N ratio. These results suggested a difference in the C and N metabolism of maize plants at ambient and low temperature regimes. AM symbiosis modulated C metabolic enzymes, thereby inducing an accumulation of soluble sugars, which may have contributed to an increased tolerance to low temperature, and therefore higher Pn in maize plants.

Additional keywords: arbuscular mycorrhizal fungi, carbohydrates, N assimilation, photosynthesis, sucrose metabolism, Zea mays L.


References

Abdel Latef AA, Chaoxing H (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiologiae Plantarum 33, 1217–1225.
Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOntb7P&md5=2c588e61bb3e2934797612c7e5b08008CAS |

Abdel Latef AA, Chaoxing H (2014) Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants? Journal of Plant Growth Regulation 33, 644–653.
Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVCksbc%3D&md5=d198f3675572588cce8eabd04d7bd386CAS |

Arbona V, Manzi M, de Ollas C, Gomez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences 14, 4885–4911.
Metabolomics as a tool to investigate abiotic stress tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1Gjs7c%3D&md5=786865f083621302ceacc11899ccb7b4CAS | 23455464PubMed |

Batta SK, Singh R (1986) Sucrose metabolism in sugar cane grown under varying climatic conditions: synthesis and storage of sucrose in relation to the activities of sucrose synthase, sucrose-phosphate synthase and invertase. Phytochemistry 25, 2431–2437.
Sucrose metabolism in sugar cane grown under varying climatic conditions: synthesis and storage of sucrose in relation to the activities of sucrose synthase, sucrose-phosphate synthase and invertase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXotFKhtw%3D%3D&md5=7a25a8e10f61d27bf4b6a5e4b263c888CAS |

Berta G, Copetta A, Gamalero E, Bona E, Cesaro P, Scarafoni A, D’Agostino G (2014) Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza 24, 161–170.
Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field.Crossref | GoogleScholarGoogle Scholar | 23995918PubMed |

Bhowmik PK, Tamura K, Sanada Y, Tase K, Yamada T (2006) Sucrose metabolism of perennial ryegrass in relation to cold acclimation. Zeitschrift für Naturforschung 61c, 99–104.

Cánovas FM, Avila C, Cantón FR, Cañas RA, de la Torre F (2007) Ammonium assimilation and amino acid metabolism in conifers. Journal of Experimental Botany 58, 2307–2318.
Ammonium assimilation and amino acid metabolism in conifers.Crossref | GoogleScholarGoogle Scholar | 17490997PubMed |

Chen X, Song F, Liu F, Tian C, Liu S, Xu H, Zhu X (2014) Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes. The Scientific World Journal 2014, 956141

Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiology 125, 61–64.
Nitrogen and carbon nutrient and metabolite signaling in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslymtL8%3D&md5=dfda31477828e32f7e31489a31332832CAS | 11154297PubMed |

Dodd IC, Perez-Alfocea F (2012) Microbial amelioration of crop salinity stress. Journal of Experimental Botany 63, 3415–3428.
Microbial amelioration of crop salinity stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVSitLg%3D&md5=2b246f20bafce31ed439897bb7dcdb97CAS | 22403432PubMed |

Duhamel M, Vandenkoornhuyse P (2013) Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant neodomestication. Trends in Plant Science 18, 597–600.
Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant neodomestication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOkurnF&md5=b75447bc19fdf1954ca1e04fb28c1d10CAS | 24055138PubMed |

Faure S, Cliquet JB, Thephany G, Boucaud J (1998) Nitrogen assimilation in Lolium perenne colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum. New Phytologist 138, 411–417.
Nitrogen assimilation in Lolium perenne colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum.Crossref | GoogleScholarGoogle Scholar |

Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bucking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America 109, 2666–2671.
Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVKrs7k%3D&md5=62f92aad66c0ed1ebb3a73a9aba87c1eCAS | 22308426PubMed |

Gianinazzi S, Gollotte A, Binet M, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20, 519–530.
Agroecology: the key role of arbuscular mycorrhizas in ecosystem services.Crossref | GoogleScholarGoogle Scholar | 20697748PubMed |

Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular infection in roots. New Phytologist 84, 489–500.
An evaluation of techniques for measuring vesicular-arbuscular infection in roots.Crossref | GoogleScholarGoogle Scholar |

Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435, 819–823.
Nitrogen transfer in the arbuscular mycorrhizal symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVGgsL8%3D&md5=df6fdf0470a4633ff2d220a460f87e50CAS | 15944705PubMed |

Heinemeyer A, Ineson P, Ostle N, Fitter AH (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytologist 171, 159–170.
Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1Cls7s%3D&md5=67e4d6efaa324b571b3ea12ac28b20d7CAS | 16771991PubMed |

Javaid A (2009) Arbuscular mycorrhizal mediated nutrition in plant. Journal of Plant Nutrition 32, 1595–1618.
Arbuscular mycorrhizal mediated nutrition in plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSns7bK&md5=f46807d7991139769eb46a142df0fa79CAS |

Kormanik PP, Bryan WC, Schultz RC (1980) Procedure and equipment for staining large number of plant roots for endomycorrhizal assay. Canadian Journal of Microbiology 26, 536–538.
Procedure and equipment for staining large number of plant roots for endomycorrhizal assay.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c7pvFGlsw%3D%3D&md5=838acd30466d4e58633a3f425556092cCAS | 6155191PubMed |

Kusano M, Fukushima A, Redestig H, Saito K (2011) Metabolomic approaches toward understanding nitrogen metabolism in plants. Journal of Experimental Botany 62, 1439–1453.
Metabolomic approaches toward understanding nitrogen metabolism in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Gjsbc%3D&md5=e201a1b8faa33d5e3d9d69eb2b6dae5fCAS | 21220784PubMed |

Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist 181, 199–207.
Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlaktL8%3D&md5=7bbcf7bd03cff75b6a91dda0b728b9e6CAS | 18811615PubMed |

Leloir LF, Cardini CE (1953) The biosynthesis of sucrose. Journal of the American Chemical Society 75, 6084
The biosynthesis of sucrose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXhvVGrug%3D%3D&md5=362e6c9f1eedf199d297d76ab9e1ad91CAS |

Li JY, Liu XH, Cai QS, Gu H, Zhang SS, Wu YY, Wang CJ (2008) Effects of elevated CO2 on growth, carbon assimilation, photosynthate accumulation and related enzymes in rice leaves during sink-source transition. Journal of Integrative Plant Biology 50, 723–732.
Effects of elevated CO2 on growth, carbon assimilation, photosynthate accumulation and related enzymes in rice leaves during sink-source transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1Wksr4%3D&md5=5812086d8f2553bc156ee931e2b99c7aCAS | 18713413PubMed |

Liu ZL, Li YJ, Hou HY, Zhu XC, Rai V, He XY, Tian CJ (2013) Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: aspects of N and C metabolism on the plant side. Plant Physiology and Biochemistry 71, 87–95.
Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: aspects of N and C metabolism on the plant side.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFent7bI&md5=ea702904f963a51634b512737b39a259CAS | 23896605PubMed |

Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T (2005) Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiology 139, 329–340.
Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCgur3P&md5=1efffc1fe166ea1a304893821457dd29CAS | 16126866PubMed |

Ludwig M (2013) Evolution of the C4 photosynthetic pathway: events at the cellular and molecular levels. Photosynthesis Research 117, 147–161.
Evolution of the C4 photosynthetic pathway: events at the cellular and molecular levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWqtb3I&md5=a2476c389daaaf4d6c8f89995136a836CAS | 23708978PubMed |

Luo J, Li H, Liu T, Polle A, Peng C, Luo Z (2013) Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. Journal of Experimental Botany 64, 4207–4224.
Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ygs7vP&md5=42aa79c98d4b308e9c621b3316101dacCAS | 23963674PubMed |

Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Terce-Laforgue T, Quillere I, Coque M, Gallais A, Gonzalez-Moro M, Bethencourt L, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards KJ, Hirel B (2006) Two cytosolic glutamine synthetase isoforms of maize (Zea mays L.) are specifically involved in the control of grain production. The Plant Cell 18, 3252–3274.
Two cytosolic glutamine synthetase isoforms of maize (Zea mays L.) are specifically involved in the control of grain production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Crtg%3D%3D&md5=2a74f0bb1b9283c28dfb8c58a2a2d2b7CAS | 17138698PubMed |

Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A, Stitt M (2001) The immediate cause of the diurnal changes of nitrogen metabolism in leaves of nitrate-replete tobacco: a major imbalance between the rate of nitrate reduction and the rates of nitrate uptake and ammonium metabolism during the first part of the light period. Plant, Cell & Environment 24, 177–190.
The immediate cause of the diurnal changes of nitrogen metabolism in leaves of nitrate-replete tobacco: a major imbalance between the rate of nitrate reduction and the rates of nitrate uptake and ammonium metabolism during the first part of the light period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFGrt78%3D&md5=5aeca0be8b39e2fc30ef61215a83e06aCAS |

Miedema P (1982) The effects of low temperature on Zea mays. Advances in Agronomy 35, 93–128.
The effects of low temperature on Zea mays.Crossref | GoogleScholarGoogle Scholar |

Ngwene B, Gabriel E, George E (2013) Influence of different mineral nitrogen sources (NO3 –-N vs. NH4 +-N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices–cowpea symbiosis. Mycorrhiza 23, 107–117.
Influence of different mineral nitrogen sources (NO3 -N vs. NH4 +-N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices–cowpea symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslamsr4%3D&md5=25b05245aca38579782ce3e2041d422dCAS | 22810583PubMed |

Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant 3, 973–996.
Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFantLjO&md5=f1e5118e5232f028b197bb8ac3715c55CAS | 20926550PubMed |

Pérez-Tienda J, Valderas A, Camañes G, García-Agustín P, Ferrol N (2012) Kinetics of NH4 + uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza 22, 485–491.
Kinetics of NH4 + uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis.Crossref | GoogleScholarGoogle Scholar | 22752460PubMed |

Smith SE, Read DJ (2008) ‘Mycorrhizal symbiosis.’ 3rd edn (Academic Press: London)

Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104, 1–13.
Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth.Crossref | GoogleScholarGoogle Scholar | 21933929PubMed |

Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant, Cell & Environment 28, 1247–1254.
Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGitbnF&md5=6734d516f95459b16ad32c445af6bc6cCAS |

Theocharis A, Clement C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235, 1091–1105.
Physiological and molecular changes in plants grown at low temperatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnslamsbk%3D&md5=5a6d1b8f4c70ca3139f0b12dd70999b7CAS | 22526498PubMed |

Tisserant B, Brenac V, Requena N, Jeffries P, Dodd JC (1998) The detection of Glomus spp. (arbuscular mycorrhizal fungi) forming mycorrhizas in three plants, at different stages of seedling development, using mycorrhiza-specific isozymes. New Phytologist 138, 225–239.
The detection of Glomus spp. (arbuscular mycorrhizal fungi) forming mycorrhizas in three plants, at different stages of seedling development, using mycorrhiza-specific isozymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlOnurg%3D&md5=4e1080c25b397c8a15e6e0d47a394d7dCAS |

Toussaint JP, St-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Canadian Journal of Microbiology 50, 251–260.
Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFChtLs%3D&md5=410d56357931ae783b23c92fe3574a07CAS | 15213749PubMed |

Verma AK, Upadhyay SK, Verma PC, Solomon S, Singh SB (2011) Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars. Plant Biology 13, 325–332.
Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVGmsLg%3D&md5=1980b3cd85fad34e4974f667dfeebc3eCAS | 21309979PubMed |

Wang X, Zhao Q, Ma C, Zhang Z, Cao H, Kong Y, Yue C, Hao X, Chen L, Ma J, Jin J, Li X, Yang Y (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14, 415
Global transcriptome profiles of Camellia sinensis during cold acclimation.Crossref | GoogleScholarGoogle Scholar | 23799877PubMed |

Yu XZ, Zhang FZ (2012) Activities of nitrate reductase and glutamine synthetase in rice seedlings during cyanide metabolism. Journal of Hazardous Materials 225–226, 190–194.
Activities of nitrate reductase and glutamine synthetase in rice seedlings during cyanide metabolism.Crossref | GoogleScholarGoogle Scholar | 22633925PubMed |

Zhang ZL, Qu W (2004) ‘Experimental guidance of plant physiology.’ (Higher Education Press: Beijing)

Zhu XG, Long SP, Ort DB (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology 19, 153–159.
What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslKisL4%3D&md5=40e107e4a0287051fe3da246b12124a9CAS | 18374559PubMed |

Zhu XC, Song FB, Xu HW (2010a) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant and Soil 331, 129–137.
Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVOhs7k%3D&md5=90ca25be1548c1476ae67d4d63d50e9eCAS |

Zhu XC, Song FB, Xu HW (2010b) Influence of arbuscular mycorrhizae on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20, 325–332.
Influence of arbuscular mycorrhizae on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFyktbw%3D&md5=1a1f67857502420cdb0c9b349b217d43CAS |