Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
REVIEW

Methane in Australian agriculture: current emissions, sources and sinks, and potential mitigation strategies

Damien Finn A E , Ram Dalal A B and Athol Klieve A C D
+ Author Affiliations
- Author Affiliations

A School of Agriculture and Food Sciences, University of Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, Qld 4001, Australia.

B Department of Science, Information Technology, Innovation and the Arts, Queensland Government, Qld 4001, Australia.

C Department of Agriculture, Fisheries and Forestry, Queensland Government, Qld 4001, Australia.

D Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Qld 4072, Australia.

E Corresponding author. Email: damien.finn@uqconnect.edu.au

Crop and Pasture Science 66(1) 1-22 https://doi.org/10.1071/CP14116
Submitted: 14 April 2014  Accepted: 10 August 2014   Published: 24 December 2014

Abstract

Methane is a potent greenhouse gas with a global warming potential ~28 times that of carbon dioxide. Consequently, sources and sinks that influence the concentration of methane in the atmosphere are of great interest. In Australia, agriculture is the primary source of anthropogenic methane emissions (60.4% of national emissions, or 3 260 kt–1 methane year–1, between 1990 and 2011), and cropping and grazing soils represent Australia’s largest potential terrestrial methane sink. As of 2011, the expansion of agricultural soils, which are ~70% less efficient at consuming methane than undisturbed soils, to 59% of Australia’s land mass (456 Mha) and increasing livestock densities in northern Australia suggest negative implications for national methane flux. Plant biomass burning does not appear to have long-term negative effects on methane flux unless soils are converted for agricultural purposes. Rice cultivation contributes marginally to national methane emissions and this fluctuates depending on water availability. Significant available research into biological, geochemical and agronomic factors has been pertinent for developing effective methane mitigation strategies. We discuss methane-flux feedback mechanisms in relation to climate change drivers such as temperature, atmospheric carbon dioxide and methane concentrations, precipitation and extreme weather events. Future research should focus on quantifying the role of Australian cropping and grazing soils as methane sinks in the national methane budget, linking biodiversity and activity of methane-cycling microbes to environmental factors, and quantifying how a combination of climate change drivers will affect total methane flux in these systems.

Additional keywords: agronomy, methane, methanogenesis, methanotrophs, soil microbiology.


References

ABARES (2011) ‘Agricultural commodity statistics 2011.’ (Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, ACT)

ABARES (2013) ‘Agricultural commodity statistics 2013. CC BY 3.0.’ (Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, ACT)

Abberton MT, MacDuff JH, Athole HM, Humphreys MW (2007) ‘The genetic improvement of forage grasses and legumes to reduce greenhouse gas emissions.’ Communication Division, FAO. (FAO: Rome)

Adamsen APS, King GM (1993) Methane consumption in temperate and sub-arctic forest soils—rates, vertical zonation, and responses to water and nitrogen. Applied and Environmental Microbiology 59, 485–490.

Alford AR, Hegarty RS, Parnell PF, Cacho OJ, Herd RM, Griffith GR (2006) The impact of breeding to reduce residual feed intake on enteric methane emissions from the Australian beef industry. Australian Journal of Experimental Agriculture 46, 813–820.
The impact of breeding to reduce residual feed intake on enteric methane emissions from the Australian beef industry.Crossref | GoogleScholarGoogle Scholar |

Allen DE, Mendham DS, Singh B, Cowie A, Wang W, Dalal RC, Raison RJ (2009) Nitrous oxide and methane emissions from soil are reduced following afforestation of pasture lands in three contrasting climatic zones. Australian Journal of Soil Research 47, 443–458.
Nitrous oxide and methane emissions from soil are reduced following afforestation of pasture lands in three contrasting climatic zones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvF2ktb4%3D&md5=741335db77e713d02fa556c880250317CAS |

Angel R, Matthies D, Conrad R (2011) Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS ONE 6, e20453
Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFWks7c%3D&md5=81decd51da48dec3ab6bf935e3092095CAS | 21655270PubMed |

Angel R, Claus P, Conrad R (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. International Society for Microbial Ecology Journal 6, 847–862.

Archimède H, Eugène M, Marie Magdeleine C, Boval M, Martin C, Morgavi DP, Lecomte P, Doreau M (2011) Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology 166–167, 59–64.
Comparison of methane production between C3 and C4 grasses and legumes.Crossref | GoogleScholarGoogle Scholar |

Asanuma N, Hino T (2000) Activity and properties of fumarate reductase in ruminal bacteria. The Journal of General and Applied Microbiology 46, 119–125.
Activity and properties of fumarate reductase in ruminal bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVartQ%3D%3D&md5=75657175b451da7b7c85f6680f0084c8CAS | 12483585PubMed |

Baldock JA, Wheeler I, McKenzie N, McBrateny A (2012) Soils and climate change: potential impacts on carbon stocks and greenhouse gas emissions, and future research for Australian agriculture. Crop & Pasture Science 63, 269–283.
Soils and climate change: potential impacts on carbon stocks and greenhouse gas emissions, and future research for Australian agriculture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnslamtr8%3D&md5=4a1b12c9925318e8d194f754d856e47dCAS |

Banger K, Tian H, Lu C (2012) Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Global Change Biology 18, 3259–3267.
Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields?Crossref | GoogleScholarGoogle Scholar |

Barton L, Murphy DV, Butterbach-Bahl K (2013) Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agriculture, Ecosystems & Environment 167, 23–32.
Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlGjt7c%3D&md5=ce3c764a0c6907afe34b7a1dd0f299f1CAS |

Basarab JA, Beauchemin KA, Baron VS, Ominksi KH, Guan LL, Miller SP, Crowley JJ (2013) Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production. Animal 7, 303–315.
Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production.Crossref | GoogleScholarGoogle Scholar | 23739472PubMed |

Bastin G (2008) ‘Rangelands—taking the pulse.’ (ACRIS Management Committee, National Land and Water Resources Audit: Canberra, ACT)

Bastin G (2011) ‘Livestock density update 2009–2011.’ (ACRIS Management Committee, National Land and Water Resources: Canberra, ACT)

Beauchemin KA, McGinn SM (2005) Methane emissions from feedlot cattle fed barley or corn diets. Journal of Animal Science 83, 653–661.

Beauchemin KA, Kreuzer M, O’Mara F, McAllister TA (2008) Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture 48, 21–27.
Nutritional management for enteric methane abatement: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVGn&md5=a8954fbcc50e1803de81f0370170d53aCAS |

Beever DE, Cammell SB, Sutton JD, Spooner MC, Haines MJ, Harland JI (1989) The effect of concentrate type on energy utilization in lactating cows. In ‘Proceedings of the 11th Symposium on Energy Metabolism’. EAAP, Publication No. 43: 33. (European Federation of Animal Science: Rome)

Bender M, Conrad R (1993) Kinetics of methane oxidation in oxic soils. Chemosphere 26, 687–696.
Kinetics of methane oxidation in oxic soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitl2ku7w%3D&md5=c781beada5a9d19e178fa1b0a92125d0CAS |

Bender M, Conrad R (1995) Effect of methane concentrations and soil conditions on the induction of methane oxidation activity. Soil Biology & Biochemistry 27, 1517–1527.
Effect of methane concentrations and soil conditions on the induction of methane oxidation activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSntrbN&md5=cd3a18616db1ecaea9bd0029feb53dd4CAS |

Bennett LT, Adams MA (1999) Indices for characterising spatial variability of soil nitrogen semi-arid grasslands of northwestern Australia. Soil Biology & Biochemistry 31, 735–746.
Indices for characterising spatial variability of soil nitrogen semi-arid grasslands of northwestern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1Citrk%3D&md5=4dbdd45ba986aa31ac815bf7d045811bCAS |

Betlach MR, Tiedje JM (1981) Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Applied and Environmental Microbiology 42, 1074–1084.

Bissett A, Abell GCJ, Bodrossy L, Richardson AE, Thrall PH (2012) Methanotrophic communities in Australian woodland soils of varying salinity. FEMS Microbiology Ecology 80, 685–695.
Methanotrophic communities in Australian woodland soils of varying salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVKisL4%3D&md5=e8297192a47192eafcc855d200ab3f9bCAS | 22375901PubMed |

Bodas R, Lopez S, Fernandez M, Garcia-Gonzalez R, Rodriguez AB, Wallace RJ, Gonzalez JS (2008) In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Animal Feed Science and Technology 145, 245–258.
In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVKrsb0%3D&md5=f7a48d8b62f1fda42cccfaa56f707098CAS |

Bodelier PL (2011) Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Current Opinion in Environmental Sustainability 3, 379–388.
Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils.Crossref | GoogleScholarGoogle Scholar |

Bodelier PL, Laanbroek H (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology 47, 265–277.
Nitrogen as a regulatory factor of methane oxidation in soils and sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslWgtbs%3D&md5=b32f5dba78d82a168636685d3871117dCAS | 19712315PubMed |

Bodelier PL, Meima-Franke M, Hordijk CA, Steenbergh AK, Hefting MM, Bodrossy L, von Bergen M, Seifert J (2013) Microbial minorities modulate methane consumption through niche partitioning. International Society for Microbial Ecology Journal 7, 2214–2228.

Borken W, Brumme R (2009) Methane uptake by temperate forest soils. Functioning and Management of European Beech Ecosystems 208, 369–385.
Methane uptake by temperate forest soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosFehtr4%3D&md5=1ae33b8f23b2712aed9c9ffc4c0bb137CAS |

Borken W, Brumme R, Xu YJ (2000) Effects of prolonged soil drought on methane oxidation in a temperate spruce forest. Journal of Geophysical Research, D, Atmospheres 105, 7079–7088.
Effects of prolonged soil drought on methane oxidation in a temperate spruce forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFOgt70%3D&md5=b9bea489b8b09fe392523d00fe218f9cCAS |

Bronson KF, Mosier AR (1994) Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. Biology and Fertility of Soils 17, 263–268.
Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtVCiurk%3D&md5=a498ccfda7185c86614a5e2705278790CAS |

Bryant MP (1970) Normal flora—rumen bacteria. The American Journal of Clinical Nutrition 23, 1440–1450.

Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant, Cell & Environment 20, 1175–1183.
Impact of gas transport through rice cultivars on methane emission from rice paddy fields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsVekuro%3D&md5=fdd3892a39560f4cb69d9b494a01c81cCAS |

Buxton DR, Fales SL (1994) Plant environment and quality. In ‘Forage quality, evaluation and utilization’. (Ed. GC Fahey, Jr) (ASA, CSSA, SSSA: Madison, WI, USA)

Carlsen HN, Joergensen L, Degn H (1991) Inhibition by ammonia of methane utilization in Methylococcus capsulatus (BATH). Applied Microbiology and Biotechnology 35, 124–127.
Inhibition by ammonia of methane utilization in Methylococcus capsulatus (BATH).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXit1Gntb8%3D&md5=9e5a31e36f4fd67f63c361a2c8b0ef21CAS |

Castaldi S, Ermice A, Strumia S (2006) Fluxes of nitrous oxide and methane from soils of savannas and seasonally-dry ecosystems. Journal of Biogeography 33, 401–415.
Fluxes of nitrous oxide and methane from soils of savannas and seasonally-dry ecosystems.Crossref | GoogleScholarGoogle Scholar |

Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD (1995) Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemical Cycles 9, 1–10.
Factors controlling atmospheric methane consumption by temperate forest soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFGitL8%3D&md5=05688dca686f83574801ba2d7d002038CAS |

Chan ASK, Parkin TB (2001) Methane oxidation and production activity in soils from natural and agricultural ecosystems. Journal of Environmental Quality 30, 1896–1903.
Methane oxidation and production activity in soils from natural and agricultural ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Sls7k%3D&md5=3db830b06bff7e172a0cdd74e556fb92CAS |

Chen D, Suter H, Islam A, Edis R, Freney JR, Walker CN (2008) Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Australian Journal of Soil Research 46, 289–301.
Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1OktLw%3D&md5=0982154fe1b900a4807420f18f6dd822CAS |

Chianese DS, Rotz CA, Richard TL (2009) Simulation of methane emissions from dairy farms to assess greenhouse gas reduction strategies. Transactions of the ASABE 52, 1313–1323.
Simulation of methane emissions from dairy farms to assess greenhouse gas reduction strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wru7bI&md5=45eeec7b254c23ea45a6c6e43876a949CAS |

Church D (1976) Anatomy of the stomach of ruminants and pseudoruminants. In ‘Digestive physiology and nutrition of ruminants’. Vol. 1. 2nd edn (Oxford University Press Inc.: Oxford, UK)

Cicerone R, Oremland R (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles 2, 299–327.
Biogeochemical aspects of atmospheric methane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVCjtLk%3D&md5=efac647045763e00977ab9dfb3d31a59CAS |

Clark H, Kelliher F, Pinares-Patiño C (2011) Reducing methane emissions from grazing ruminants in New Zealand: challenges and opportunities. Asian-Australasian Journal of Animal Sciences 24, 295–302.
Reducing methane emissions from grazing ruminants in New Zealand: challenges and opportunities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs12qsr8%3D&md5=ce10ab3dd208066bb3cb0ac82323a8e2CAS |

Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: Projections, commitments and irreversibility. In ‘Climate change 2013: the physical science basis’. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Eds TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex, PM Midgley) (Cambridge University Press: Cambridge, UK/New York)

Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology 28, 193–202.
Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvF2nsro%3D&md5=b7231522b2d88d1af4c8a1cd680eebd0CAS |

Conrad R (2002) Control of microbial methane production in wetland rice fields. Nutrient Cycling in Agroecosystems 64, 59–69.
Control of microbial methane production in wetland rice fields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVCls7Y%3D&md5=eb4f967ed4fda8678897d6158f7eab49CAS |

Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports 1, 285–292.
The global methane cycle: recent advances in understanding the microbial processes involved.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWgurw%3D&md5=6ab3ea1722f4ec2d6f27e996179d822bCAS | 23765881PubMed |

Conrad R, Wetter B (1990) Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic-bacteria. Archives of Microbiology 155, 94–98.
Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic-bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvVKktA%3D%3D&md5=f374b9919d4d7ea0f76155fe3f078b3fCAS |

Conrad R, Schutz H, Holzapfel-Pschorn A, Seiler W (1987) Production, oxidation and emission of methane from rice paddies. Abstracts of Papers of the American Chemical Society 193, 86-GEOC

Cookson WR, Muller C, O’Brien PA, Murphy DV, Grierson PF (2006) Nitrogen dynamics in an Australian semi-arid grassland soil. Ecology 87, 2047–2057.
Nitrogen dynamics in an Australian semi-arid grassland soil.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28rhtl2hug%3D%3D&md5=9ac2464663ecd9153ba96e48a0703bb8CAS | 16937644PubMed |

Cottle DJ, Nolan JV, Wiedemann SG (2011) Ruminant enteric methane mitigation: a review. Animal Production Science 51, 491–514.
Ruminant enteric methane mitigation: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVGisLY%3D&md5=3479d033c57f514454c536e94f55dde9CAS |

Crutzen PJ, Aselmann I, Seiler W (1986) Methane production by domestic animals, wild ruminants, other herbivorous fauna and humans. Tellus. Series B, Chemical and Physical Meteorology 38B, 271–284.
Methane production by domestic animals, wild ruminants, other herbivorous fauna and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXnt1Wmsw%3D%3D&md5=5a3c8d4f9dcd097b2aa2175ac22d83a9CAS |

Dalal RC, Allen DE, Livesley SJ, Richards G (2008) Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant and Soil 309, 43–76.
Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVyhsrg%3D&md5=54b39b7f99424ed1c5e2f16907bc0e33CAS |

Dalton H (1977) Ammonia oxidation by methane oxidizing bacterium Methylococcus capsulatus strain Bath. Archives of Microbiology 114, 273–279.
Ammonia oxidation by methane oxidizing bacterium Methylococcus capsulatus strain Bath.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXivV2g&md5=cdbb431e9a6c7a9ddef5ff7b2b1f6f46CAS |

Dean C, Wardell-Johnson GW, Harper RJ (2012) Carbon management of commercial rangelands in Australia: Major pools and fluxes. Agriculture, Ecosystems & Environment 148, 44–64.
Carbon management of commercial rangelands in Australia: Major pools and fluxes.Crossref | GoogleScholarGoogle Scholar |

Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PC, Wofsy SC, Zhang X (2007a) Couplings between changes in the climate system and biogeochemistry. In ‘Climate change 2007: the physical science basis’. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Eds S Solomon, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor, HL Miller) (Cambridge University Press: Cambridge, UK/New York)

Denman SE, Tomkins N, McSweeney CS (2007b) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiology Ecology 62, 313–322.
Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsValtr7E&md5=ebf25b02df0a3df08bbd8a2b9fa25d6eCAS | 17949432PubMed |

Denmead OT, Macdonald BCT, Bryant G, Naylor T, Wilson S, Griffith DWT, Wang WJ, Salter B, White I, Moody PW (2010) Emissions of methane and nitrous oxide from Australian sugarcane soils. Agricultural and Forest Meteorology 150, 748–756.
Emissions of methane and nitrous oxide from Australian sugarcane soils.Crossref | GoogleScholarGoogle Scholar |

Deppenmeier U, Muller V, Gottschalk G (1996) Pathways of energy conservation in methanogenic archaea. Archives of Microbiology 165, 149–163.
Pathways of energy conservation in methanogenic archaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitlWjsro%3D&md5=e4cdeb4150b5fe3d2a134de6dbb2a801CAS |

Devendra C, Leng RA (2011) Feed resources for animals in Asia: priority for expanding the development frontiers. Malaysia Science Journal 24, 173–184.

Dewhurst RJ, Delaby L, Moloney A, Boland T, Lewis E (2009) Nutritive value of forage legumes used for forage and grazing. Irish Journal of Agricultural and Food Research 48, 167–187.

DEWR (2007) ‘Australia’s native vegetation. A summary of Australia’s major vegetation groups, 2007.’ (Department of the Environment and Water Resources: Canberra, ACT)

Dijkstra FA, Morgan JA, LeCain DR, Follett RF (2010) Microbially mediated methane consumption and nitrous oxide emission is affected by elevated carbon dioxide, soil water content, and composition of semi-arid grassland species. Plant and Soil 329, 269–281.
Microbially mediated methane consumption and nitrous oxide emission is affected by elevated carbon dioxide, soil water content, and composition of semi-arid grassland species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFGlur0%3D&md5=0695ecf9ffa780af3904092f89b58d1dCAS |

Dijkstra FA, Morgan JA, von Fischer JC, Follett RF (2011) Elevated carbon dioxide and warming effects on methane uptake in a semi-arid grassland below optimum soil moisture. Journal of Geophysical Research 116, G01007
Elevated carbon dioxide and warming effects on methane uptake in a semi-arid grassland below optimum soil moisture.Crossref | GoogleScholarGoogle Scholar |

Ding X, Long R, Mi J, Guo X (2010) Measurement of methane and carbon dioxide emissions from ruminants based on the NDIR technique. Spectroscopy and Spectral Analysis 30, 1503–1506.

Dorr N, Glaser B, Kolb S (2010) Methanotrophic communities in Brazilian ferralsols from naturally forested, afforested, and agricultural sites. Applied and Environmental Microbiology 76, 1307–1310.
Methanotrophic communities in Brazilian ferralsols from naturally forested, afforested, and agricultural sites.Crossref | GoogleScholarGoogle Scholar | 20038707PubMed |

Drake HL, Horn MA, Wust PK (2009) Intermediary ecosystem metabolism as a main driver of methanogenesis in acidic wetland soil. Environmental Microbiology Reports 1, 307–318.
Intermediary ecosystem metabolism as a main driver of methanogenesis in acidic wetland soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWguro%3D&md5=e08f9cefb074205cbd051f4332d062e8CAS | 23765883PubMed |

Dubey S (2005) Microbial ecology of methane emission in rice agroecosystem, a review. Applied Ecology and Environmental Research. 3, 1–27.
Microbial ecology of methane emission in rice agroecosystem, a review.Crossref | GoogleScholarGoogle Scholar |

Dunfield, PF (2007) The soil methane sink. In ‘Greenhouse gas sinks’. Ch 10. pp. 152–170.

Dunfield P, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and sub-arctic peat soils—response to temperature and pH. Soil Biology & Biochemistry 25, 321–326.
Methane production and consumption in temperate and sub-arctic peat soils—response to temperature and pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisFeqtL8%3D&md5=39dcca000569e6a69547f65bfde35c70CAS |

Dunfield PF, Topp E, Archambault C, Knowles R (1995) Effect of nitrogen fertilizers and moisture content on methane and nitrous oxide fluxes in a humisol—measurements in the field and intact soil cores. Biogeochemistry 29, 199–222.
Effect of nitrogen fertilizers and moisture content on methane and nitrous oxide fluxes in a humisol—measurements in the field and intact soil cores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotFegsr8%3D&md5=63a0f58f1d4dfb5aead96815c6a141d0CAS |

Eckard RJ, Grainger C, de Klein CAM (2010) Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livestock Science 130, 47–56.
Options for the abatement of methane and nitrous oxide from ruminant production: A review.Crossref | GoogleScholarGoogle Scholar |

Edwards JE, Huws SA, Kim EJ, Lee MRF, Kingston-Smith AH, Scollan ND (2008) Advances in microbial ecosystem concepts and their consequences for ruminant agriculture. Animal 2, 653–660.
Advances in microbial ecosystem concepts and their consequences for ruminant agriculture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vptVykuw%3D%3D&md5=ee018c5712d7540282f058e0638a9a2cCAS | 22443590PubMed |

Egan AR (1989) Living with, and overcoming limits to, feeding value of high fibre roughages. In ‘Draught animals in rural development’. ACIAR Proceedings No. 27. (Eds D Hoffman, J Nari, RJ Petram) (Australian Centre for International Agricultural Research: Canberra, ACT)

Ellis JL, Dijkstra J, Kebreab E, Bannink A, Odongo NE, McBride BW, France J (2008) Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. The Journal of Agricultural Science 146, 213–233.
Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs12kuro%3D&md5=6e97ac7cdf3d37bc6dfa52ca612f4f50CAS |

Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of rice cluster I archaea—the key methane producers in the rice rhizosphere. Science 313, 370–372.
Genome of rice cluster I archaea—the key methane producers in the rice rhizosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFyqsbc%3D&md5=5164bb2afd33683c2ef8000a1e227f60CAS | 16857943PubMed |

Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels H, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, den Camp H, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548.
Nitrite-driven anaerobic methane oxidation by oxygenic bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVGks7o%3D&md5=d5ed90fea7135de3a9904361d5d2e471CAS | 20336137PubMed |

Fahey GC, Hussein HS (1999) Forty years of forage quality research: accomplishments and impact from an animal nutrition perspective. Crop Science 39, 4–12.
Forty years of forage quality research: accomplishments and impact from an animal nutrition perspective.Crossref | GoogleScholarGoogle Scholar |

Farrell TC, Fox KM, Williams RL, Fukai S, Lewin LG (2006) Minimising cold damage during reproductive development among temperate rice genotypes. II. Genotypic variation and flowering traits related to cold tolerance screening. Australian Journal of Agricultural Research 57, 89–100.
Minimising cold damage during reproductive development among temperate rice genotypes. II. Genotypic variation and flowering traits related to cold tolerance screening.Crossref | GoogleScholarGoogle Scholar |

Fest BJ, Livesley SJ, Drosler M, Gorsel E, Arndt SK (2009) Soil-atmosphere greenhouse gas exchange in a cool, temperate Eucalyptus delegatensis forest in south-eastern Australia. Agricultural and Forest Meteorology 149, 393–406.
Soil-atmosphere greenhouse gas exchange in a cool, temperate Eucalyptus delegatensis forest in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In ‘Climate change 2007: the physical science basis’. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel for Climate Change Fourth Assessment Report 1, pp. 130–217. (Cambridge University Press: Cambridge, UK/New York)

Freibauer A (2003) Regionalised inventory of biogenic greenhouse gas emissions from European agriculture. European Journal of Agronomy 19, 135–160.
Regionalised inventory of biogenic greenhouse gas emissions from European agriculture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVKhtLw%3D&md5=4db970cc6b5379359b8ee8290e6b5518CAS |

Frenzel P, Bosse U, Janssen PH (1999) Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in the rooted soil. Soil Biology & Biochemistry 31, 421–430.
Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in the rooted soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVOqs7k%3D&md5=a040b13c28b93baa2bcfd5dc3052b540CAS |

Galbally IE, Kirstine WV, Meyer CP, Wang YP (2008) Soil–atmosphere trace gas exchange in semi-arid and arid zones. Journal of Environmental Quality 37, 599
Soil–atmosphere trace gas exchange in semi-arid and arid zones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVWkt7s%3D&md5=0aba0cc8578fff356e7c429be4e51717CAS | 18396546PubMed |

Galbally IE, Meyer CP, Wang Y-P, Kirstine W (2010) Soil–atmosphere exchange of methane, carbon monoxide, nitrous oxide and nitric oxide and the effects of land-use change in the semi-arid Mallee system in Southeastern Australia. Global Change Biology 16, 2407–2419.

Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6, 205–226.
Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1ansLk%3D&md5=3f4da698978b6bb547f31e05464119aaCAS | 16887666PubMed |

Goel G, Makkar HPS, Becker K (2009) Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations. The British Journal of Nutrition 101, 1484–1492.
Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslSlsLo%3D&md5=550cad175c8b6abe20c4fbc71e5bd8ceCAS | 19243639PubMed |

Goshal B, Hernandez-Sanabria E, Zhou M, Stothard P, Guan LL (2012) Domesticated bovinae (cattle): terrestrial vertebrate metagenomics. In ‘Encyclopedia of metagenomics’. (Eds KE Nelson, BA White, S Highlander, F Rodriguez-Valera) (Springer: New York)

Grosso SJD, Parton WJ, Mosier AR, Ojima DS, Potter CS, Borken W, Brumme R, Butterbach-Bahl K, Crill PM, Dobbie K, Smith KA (2000) General methane oxidation model and comparisons of methane oxidation in natural and managed systems. Global Biogeochemical Cycles 14, 999–1019.
General methane oxidation model and comparisons of methane oxidation in natural and managed systems.Crossref | GoogleScholarGoogle Scholar |

Gutierrez J, Kim SY, Kim PJ (2013) Effect of rice cultivar on methane emissions and productivity in Korean paddy soil. Field Crops Research 146, 16–24.
Effect of rice cultivar on methane emissions and productivity in Korean paddy soil.Crossref | GoogleScholarGoogle Scholar |

Hales BA, Edwards C, Ritchie DA, Hall G, Pickup RW, Saunders JR (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Applied and Environmental Microbiology 62, 668–675.

Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Applied and Environmental Microbiology 69, 5483–5491.
Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlSisr0%3D&md5=908703e9a34c99071c2fcf52b0711c77CAS | 12957937PubMed |

Han C, Zhong WH, Shen WS, Cai ZC, Liu B (2013) Transgenic Bt rice has adverse impacts on methane flux and rhizospheric methanogenic archaeal and methanotrophic bacterial communities. Plant and Soil 369, 297–316.
Transgenic Bt rice has adverse impacts on methane flux and rhizospheric methanogenic archaeal and methanotrophic bacterial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyqtLjM&md5=e2f18ef55311cb27a46d9b72d43cf1a1CAS |

Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiological Reviews 60, 439

Harfoot CG (1978) Lipid metabolism in the rumen. Progress in Lipid Research 17, 21–54.
Lipid metabolism in the rumen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmvFCqtA%3D%3D&md5=dbf8cfb3f2e0415d90791e66815cbdd6CAS | 370840PubMed |

Haroon M, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson G (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570.
Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFygt7fK&md5=a81f865306d6104de3b0b30185863909CAS | 23892779PubMed |

Haverd V, Raupach MR, Briggs PR, Canadell JG, Davis SJ, Law RM, Meyer CP, Peters GP, Pickett-Heaps C, Sherman B (2013) The Australian terrestrial carbon budget. Biogeosciences 10, 851–869.
The Australian terrestrial carbon budget.Crossref | GoogleScholarGoogle Scholar |

Hegarty RS, Alcock D, Robinson DL, Goopy JP, Vercoe PE (2010) Nutritional and flock management options to reduce methane output and methane per unit product from sheep enterprises. Animal Production Science 50, 1026–1033.
Nutritional and flock management options to reduce methane output and methane per unit product from sheep enterprises.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGrt7fJ&md5=16f861a3c473ff69374426be760f2909CAS |

Henry B, Mitchell C, Cowie A, Woldring O, Carter J (2005) A regional interpretation of rules and good practice for greenhouse accounting: northern Australian savanna systems. Australian Journal of Botany 53, 589–605.
A regional interpretation of rules and good practice for greenhouse accounting: northern Australian savanna systems.Crossref | GoogleScholarGoogle Scholar |

Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463–467.
Metagenomic discovery of biomass-degrading genes and genomes from cow rumen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsF2mtA%3D%3D&md5=2cb744c4d4bba34080d74a463176a9c2CAS | 21273488PubMed |

Hiltbrunner D, Zimmermann S, Karbin S, Hagedorn F, Niklaus PA (2012) Increasing soil methane sink along a 120-year afforestation chronosequence is driven by soil moisture. Global Change Biology 18, 3664–3671.
Increasing soil methane sink along a 120-year afforestation chronosequence is driven by soil moisture.Crossref | GoogleScholarGoogle Scholar |

Ho A, Kerckhof FM, Lüke C, Reim A, Krause S, Boon N, Bodelier PL (2013) Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environmental Microbiology Reports 5, 335–345.
Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVWmsrrN&md5=88731bee1a7928e95db70a00888e3878CAS | 23754714PubMed |

Holzapfel-Pschorn A, Seiler W (1986) Methane emission during a cultivation period from an Italian rice paddy. Journal of Geophysical Research, D, Atmospheres 91, 1803–1814.

Holzapfel-Pschorn A, Conrad R, Seiler W (1985) Production, oxidation and emission of methane in rice paddies. FEMS Microbiology Ecology 31, 343–351.
Production, oxidation and emission of methane in rice paddies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtVynt70%3D&md5=e545602c8b0da4974d2d7362cacd83afCAS |

Hook SE, Wright ADG, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010, 945785–945785.
Methanogens: methane producers of the rumen and mitigation strategies.Crossref | GoogleScholarGoogle Scholar | 21253540PubMed |

Howden SM, O’Leary GJ (1997) Evaluating options to reduce greenhouse gas emissions from an Australian temperate wheat cropping system. Environmental Modelling & Software 12, 169–176.
Evaluating options to reduce greenhouse gas emissions from an Australian temperate wheat cropping system.Crossref | GoogleScholarGoogle Scholar |

Hu SH, Zeng RJ, Burow LC, Lant P, Keller J, Yuan ZG (2009) Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environmental Microbiology Reports 1, 377–384.
Enrichment of denitrifying anaerobic methane oxidizing microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWgu78%3D&md5=f7c7d5e9d64361a6e3cc2491c76c2809CAS |

Humphreys E, Lewin LG, Khan S, Beecher HG, Lacy JM, Thompson JA, Batten GD, Brown A, Russell CA, Christen EW, Dunn BW (2006) Integration of approaches to increasing water use efficiency in rice-based systems in southeast Australia. Field Crops Research 97, 19–33.
Integration of approaches to increasing water use efficiency in rice-based systems in southeast Australia.Crossref | GoogleScholarGoogle Scholar |

Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In ‘Methods in microbiology’. (Eds IR Norris, EW Ribbons) pp. 117–132. (Academic Press: New York)

Hungate RE (1988) The ruminant and the rumen. In ‘The rumen microbial ecosystem’. (Ed. PN Hobson) (Elsevier Science Publishers Ltd: London)

Hütsch BW (1998) Tillage and land use effects on methane oxidation rates and their vertical profiles in soil. Biology and Fertility of Soils 27, 284–292.
Tillage and land use effects on methane oxidation rates and their vertical profiles in soil.Crossref | GoogleScholarGoogle Scholar |

Inclán R, Uribe C, Sanchez L, Sanchez DM, Clavero A, Fernandez AM, Morante R, Blanco A, Jandl R (2012) Nitrous oxide and methane fluxes in undisturbed and burned holm oak, scots pine and pyrenean oak forests in central Spain. Biogeochemistry 107, 19–41.
Nitrous oxide and methane fluxes in undisturbed and burned holm oak, scots pine and pyrenean oak forests in central Spain.Crossref | GoogleScholarGoogle Scholar |

Jacinthe PA, Lal R (2006) Spatial variability of soil properties and trace gas fluxes in reclaimed mine land of southeastern Ohio. Geoderma 136, 598–608.
Spatial variability of soil properties and trace gas fluxes in reclaimed mine land of southeastern Ohio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlaktr7F&md5=258ae3972dcd0d9deb9a5cf9e5ee22eeCAS |

Jäckel U, Schnell S (2000) Suppression of methane emission from rice paddies by ferric iron fertilization. Soil Biology & Biochemistry 32, 1811–1814.
Suppression of methane emission from rice paddies by ferric iron fertilization.Crossref | GoogleScholarGoogle Scholar |

Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Applied and Environmental Microbiology 74, 3619–3625.
Structure of the archaeal community of the rumen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFWlsrk%3D&md5=ec4854e1fb7cc769e524570b2cbee52aCAS | 18424540PubMed |

Jenkins TC (1993) Lipid metabolism in the rumen. Journal of Dairy Science 76, 3851–3863.
Lipid metabolism in the rumen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtlShtb4%3D&md5=282f3b42b828439f204fb5a1cf913009CAS | 8132891PubMed |

Jia ZJ, Cai ZC, Xu H, Tsuruta H (2002) Effects of rice cultivars on methane fluxes in a paddy soil. Nutrient Cycling in Agroecosystems 64, 87–94.
Effects of rice cultivars on methane fluxes in a paddy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVClsLw%3D&md5=2221ea193f606bc192089123994efaeaCAS |

Johnson KA, Johnson DE (1995) Methane emissions from cattle. Journal of Animal Science 73, 2483–2492.

Jollie DR, Lipscomb JD (1991) Formate dehydrogenase from Methylosinus trichosporium OB3B – purification and spectroscopic characterization of the cofactors. The Journal of Biological Chemistry 266, 21853–21863.

Jung HG, Buxton DR, Hatfield RD, Ralph J (1993) ‘Forage cell wall structure and digestibility.’ (ASA, CSSA and SSSA: Madison, WI, USA)

Kaur K, Midmore DJ, Jalota RK, Ashwath N (2006) Pasture composition in cleared and uncleared woodlands. Australian Journal of Botany 54, 459–470.
Pasture composition in cleared and uncleared woodlands.Crossref | GoogleScholarGoogle Scholar |

Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiology Ecology 76, 49–63.
Status of the phylogenetic diversity census of ruminal microbiomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVOqsLo%3D&md5=b5978d65968e6fa04d0913b2403d49d1CAS | 21223325PubMed |

King GM, Schnell S (1994a) Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3B at low methane concentrations. Applied and Environmental Microbiology 60, 3508–3513.

King GM, Schnell S (1994b) Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature 370, 282–284.
Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlejs7o%3D&md5=c10c3783c5c15adda3d29f15492063b7CAS |

Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Le Quéré C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nature Geoscience 6, 813–823.
Three decades of global methane sources and sinks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyqt7nN&md5=c133a6bfefd8da144d4bd43d084a8311CAS |

Kizilova A, Yurkov A, Kravchenko I (2013) Aerobic methanotrophs in natural and agricultural soils of European Russia. Diversity 5, 541–556.
Aerobic methanotrophs in natural and agricultural soils of European Russia.Crossref | GoogleScholarGoogle Scholar |

Klieve AV, Hegarty RS (1999) Opportunities for biological control of ruminal methanogenesis. Australian Journal of Agricultural Research 50, 1315–1319.
Opportunities for biological control of ruminal methanogenesis.Crossref | GoogleScholarGoogle Scholar |

Klüber HD, Conrad R (1998) Effects of nitrate, nitrite, nitric oxide and nitrous oxide on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiology Ecology 25, 301–318.
Effects of nitrate, nitrite, nitric oxide and nitrous oxide on methanogenesis and other redox processes in anoxic rice field soil.Crossref | GoogleScholarGoogle Scholar |

Knief C, Lipski A, Dunfield PF (2003) Diversity and activity of methanotrophic bacteria in different upland soils. Applied and Environmental Microbiology 69, 6703–6714.
Diversity and activity of methanotrophic bacteria in different upland soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVyktL8%3D&md5=fd40fd571dc4936bd0f679b2546ac01aCAS | 14602631PubMed |

Knief C, Kolb S, Bodelier PLE, Lipski A, Dunfield PF (2006) The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Environmental Microbiology 8, 321–333.
The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFWrs74%3D&md5=9225373bc963c43cb8e1dee87d3e560cCAS | 16423018PubMed |

Kolb S (2009) The quest for atmospheric methane oxidisers in forest soils. Environmental Microbiology Reports 1, 336–346.
The quest for atmospheric methane oxidisers in forest soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWgurg%3D&md5=d8c49ed68aad35ecba192823f5d6aecdCAS | 23765885PubMed |

Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiology Reviews 27, 663–693.
Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1ekur8%3D&md5=475d569e8402eca4f3eb1f8bdea10e11CAS | 14638418PubMed |

Krüger M, Frenzel P, Conrad R (2001) Microbial processes influencing methane emission from rice fields. Global Change Biology 7, 49–63.
Microbial processes influencing methane emission from rice fields.Crossref | GoogleScholarGoogle Scholar |

Lam SK, Chen D, Norton R, Armstrong R, Mosier AR (2013) Influence of elevated atmospheric carbon dioxide and supplementary irrigation on greenhouse gas emissions from a spring wheat crop in southern Australia. The Journal of Agricultural Science 151, 201–208.
Influence of elevated atmospheric carbon dioxide and supplementary irrigation on greenhouse gas emissions from a spring wheat crop in southern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVaqtr4%3D&md5=261590cba06a5b4f97a8d0fbc3738b15CAS |

Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology 37, 25–50.
Production, oxidation, emission and consumption of methane by soils: A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFOnsbs%3D&md5=7717b14f87c74aae1ed2b36d69d35fd3CAS |

Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D, Attwood GT (2010) The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS ONE 5, e8926
The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions.Crossref | GoogleScholarGoogle Scholar | 20126622PubMed |

Leng RA (1990) Factors affecting the utilization of poor-quality forages by ruminants particularly under tropical conditions. Nutrition Research Reviews 3, 277–303.
Factors affecting the utilization of poor-quality forages by ruminants particularly under tropical conditions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2FktVSgsw%3D%3D&md5=c8dbb1c8f50b76a230e5d32df368f82fCAS | 19094342PubMed |

Leng RA (2014) Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation. Animal Production Science 54, 519–543.
Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1ehtrw%3D&md5=36e6c74ff92546b092486f5af63831b7CAS |

Levine UY, Teal TK, Robertson GP, Schmidt TM (2011) Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. International Society for Microbial Ecology Journal 5, 1683–1691.

Lie TJ, Costa KC, Lupa B, Korpole S, Whitman WB, Leigh JA (2012) Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis. Proceedings of the National Academy of Sciences of the United States of America 109, 15473–15478.
Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyjtLjI&md5=37952054adeb60529e804140c08a4888CAS | 22872868PubMed |

Lieberman RL, Rosenzweig AC (2004) Biological methane oxidation: Regulation, biochemistry, and active site structure of particulate methane monooxygenase. Critical Reviews in Biochemistry and Molecular Biology 39, 147–164.
Biological methane oxidation: Regulation, biochemistry, and active site structure of particulate methane monooxygenase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslaktrY%3D&md5=bd024cfa11e3a0209043f5527133a301CAS | 15596549PubMed |

Lin CZ, Raskin L, Stahl DA (1997) Microbial community structure in gastrointestinal tracts of domestic animals: Comparative analyses using rRNA-targeted oligonucleotide probes. FEMS Microbiology Ecology 22, 281–294.
Microbial community structure in gastrointestinal tracts of domestic animals: Comparative analyses using rRNA-targeted oligonucleotide probes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVSitbw%3D&md5=d7f731aafd7ccce7ee9c275f74e6839aCAS |

Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. In ‘Incredible anaerobes: From physiology to genomics to fuels’. Vol. 1125. (Eds J Wiegel, RJ Maier, MWW Adams) pp. 171–189. (Wiley: New York)

Liu CY, Holst J, Bruggemann N, Butterbach-Bahl K, Yao ZS, Yue J, Han SH, Han X, Krummelbein J, Horn R, Zheng XH (2007) Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmospheric Environment 41, 5948–5958.
Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFSqu70%3D&md5=e934e3c390ea54b20445696fcb49ffbfCAS |

Livesley SJ, Kiese R, Graham J, Weston CJ, Butterbach-Bahl K, Arndt SK (2008) Trace gas flux and the influence of short-term soil water and temperature dynamics in Australian sheep grazed pastures of differing productivity. Plant and Soil 309, 89–103.
Trace gas flux and the influence of short-term soil water and temperature dynamics in Australian sheep grazed pastures of differing productivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVyhs78%3D&md5=7c7b7bd3998c10da4ea3d0cb3d6f03a0CAS |

Livesley SJ, Kiese R, Miehle P, Weston CJ, Butterbach-Bahl K, Arndt SK (2009) Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations. Global Change Biology 15, 425–440.
Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations.Crossref | GoogleScholarGoogle Scholar |

Livesley SJ, Grover S, Hutley LB, Jamali H, Butterbach-Bahl K, Fest B, Beringer J, Arndt SK (2011) Seasonal variation and fire effects on methane, nitrous oxide and carbon dioxide exchange in savanna soils of northern Australia. Agricultural and Forest Meteorology 151, 1440–1452.
Seasonal variation and fire effects on methane, nitrous oxide and carbon dioxide exchange in savanna soils of northern Australia.Crossref | GoogleScholarGoogle Scholar |

Livesley SJ, Idczak D, Fest BJ (2013) Differences in carbon density and soil methane/nitrous oxide flux among remnant and agro-ecosystems established since European settlement in the Mornington Peninsula, Australia. The Science of the Total Environment 465, 17–25.
Differences in carbon density and soil methane/nitrous oxide flux among remnant and agro-ecosystems established since European settlement in the Mornington Peninsula, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSlsL3F&md5=ce79eb12ddc6b7416c905ac255806e14CAS | 23859466PubMed |

Lopez S, McIntosh E, Wallace RJ, Newbold CJ (1999) Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Animal Feed Science and Technology 78, 1–9.
Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVWktrw%3D&md5=1101e81da36665a6c68e04f1db574535CAS |

Lüke C, Bodrossy L, Lupotto E, Frenzel P (2011) Methanotrophic bacteria associated to rice roots: the cultivar effect assessed by T-RFLP and microarray analysis. Environmental Microbiology Reports 3, 518–525.
Methanotrophic bacteria associated to rice roots: the cultivar effect assessed by T-RFLP and microarray analysis.Crossref | GoogleScholarGoogle Scholar | 23761330PubMed |

Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148, 3521–3530.

Ly P, Jensen LS, Bruun TB, de Neergaard A (2013) Methane and nitrous oxide emissions from the system of rice intensification (SRI) under a rain-fed lowland rice ecosystem in Cambodia. Nutrient Cycling in Agroecosystems 97, 13–27.
Methane and nitrous oxide emissions from the system of rice intensification (SRI) under a rain-fed lowland rice ecosystem in Cambodia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSqtr7M&md5=15b5d90627d05e434a33264b38c01814CAS |

Ma K, Lu YH (2011) Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil. FEMS Microbiology Ecology 75, 446–456.
Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Oju7s%3D&md5=e9608e5a8d5bb1e518ddc12577b0846eCAS | 21198683PubMed |

Ma YC, Wang JY, Zhou W, Yan XY, Xiong ZQ (2012) Greenhouse gas emissions during the seedling stage of rice agriculture as affected by cultivar type and crop density. Biology and Fertility of Soils 48, 589–595.
Greenhouse gas emissions during the seedling stage of rice agriculture as affected by cultivar type and crop density.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGns7k%3D&md5=15ab96c8048366d4443daf5b4a4d630aCAS |

Ma J, Ji Y, Zhang GB, Xu H, Yagi K (2013) Timing of midseason aeration to reduce methane and nitrous oxide emissions from double rice cultivation in China. Soil Science and Plant Nutrition 59, 35–45.
Timing of midseason aeration to reduce methane and nitrous oxide emissions from double rice cultivation in China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCrsLnJ&md5=b94ea29820e2d82ecae15988311e28d3CAS |

MacDonald JA, Skiba U, Sheppard LJ, Hargreaves KJ, Smith KA, Fowler D (1996) Soil environmental variables affecting the flux of methane from a range of forest, moorland and agricultural soils. Biogeochemistry 34, 113–132.
Soil environmental variables affecting the flux of methane from a range of forest, moorland and agricultural soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xnt1Shtrc%3D&md5=f0392906424e7653f37ccbccc98f7989CAS |

Mackie RI, Kistner A (1985) Some frontiers of research in basic ruminant nutrition. South African Journal of Animal Science - Suid-Afrikaanse Tydskrif Vir Veekunde 15, 72–85.

Madsen J, Bjerg BS, Hvelplund T, Weisbjerg MR, Lund P (2010) Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livestock Science 129, 223–227.
Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants.Crossref | GoogleScholarGoogle Scholar |

Mapanda F, Mupini J, Wuta M, Nyamangara J, Rees RM (2010) A cross-ecosystem assessment of the effects of land cover and land use on soil emission of selected greenhouse gases and related soil properties in Zimbabwe. European Journal of Soil Science 61, 721–733.
A cross-ecosystem assessment of the effects of land cover and land use on soil emission of selected greenhouse gases and related soil properties in Zimbabwe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCrurzF&md5=d1a0c2efb54a9fe52b50496de2299d1fCAS |

Maraseni TN, Cockfield G (2011) Does the adoption of zero tillage reduce greenhouse gas emissions? An assessment for the grains industry in Australia. Agricultural Systems 104, 451–458.
Does the adoption of zero tillage reduce greenhouse gas emissions? An assessment for the grains industry in Australia.Crossref | GoogleScholarGoogle Scholar |

Matsui T, Kobayasi K, Yoshimoto M, Hasegawa T (2007) Stability of rice pollination in the field under hot and dry conditions in the Riverina region of New South Wales, Australia. Plant Production Science 10, 57–63.
Stability of rice pollination in the field under hot and dry conditions in the Riverina region of New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

McAllister TA, Newbold CJ (2008) Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture 48, 7–13.

McAllister TA, Okine EK, Mathison GW, Cheng KJ (1996) Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian Journal of Animal Science 76, 231–243.
Dietary, environmental and microbiological aspects of methane production in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkslKjsrg%3D&md5=0b71c11561bf6ac71d1f67422c6a08c4CAS |

McCarty JL (2011) Remote sensing-based estimates of annual and seasonal emissions from crop residue burning in the contiguous United States. Journal of the Air & Waste Management Association 61, 22–34.
Remote sensing-based estimates of annual and seasonal emissions from crop residue burning in the contiguous United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOqsLc%3D&md5=b7eddc0ee4e59a137c561f490f082060CAS |

McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Applied and Environmental Microbiology 74, 1305–1315.
Molecular ecology techniques for the study of aerobic methanotrophs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1akt74%3D&md5=cdb1ba3d13846e76b674c36bf5cadde0CAS | 18165358PubMed |

McGinn SM, Beauchemin KA, Coates T, Colombatto D (2004) Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast and fumaric acid. Journal of Animal Science 82, 3346–3356.

McKeon GM, Hall WB, Henry BK, Store GS, Watson IW (2004) ‘Pasture degradation and recovery in Australia’s rangelands: learning from history.’ (Queensland Department of Natural Resources, Mines and Energy: Brisbane, Qld)

McLain JET, Ahmann DM (2008) Increased moisture and methanogenesis contribute to reduced methane oxidation in elevated carbon dioxide soils. Biology and Fertility of Soils 44, 623–631.
Increased moisture and methanogenesis contribute to reduced methane oxidation in elevated carbon dioxide soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFKnsbs%3D&md5=ab0911a13bb434c0cc976ec27610e4c9CAS |

McSweeney CS, Mackie R (2012) ‘Micro-organisms and ruminant digestion: state of knowledge, trends and future prospects.’ Background Study Paper No. 61. (FAO: Rome)

Meehl GA, Stocker TF (2007) Global climate projections. In ‘Climate change 2007: the physical science basis’. pp. 747–845. (Cambridge University Press: Cambridge, UK/New York)

Melse RW, Van der Werf AW (2005) Biofiltration for mitigation of methane emission from animal husbandry. Environmental Science & Technology 39, 5460–5468.
Biofiltration for mitigation of methane emission from animal husbandry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksl2msLs%3D&md5=6875f9d39cff8e9c5aa060b87d83be71CAS |

Merino A, Pérez-Batallón P, Macías F (2004) Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biology & Biochemistry 36, 917–925.
Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVemsLY%3D&md5=833d38e62741d2a1732b5d8659e0cb93CAS |

Mewett J, Paplinska J, Kelley G, Lesslie R, Pritchard P, Atyeo C (2013) Towards national reporting on agricultural land use change in Australia. Technical Report CC BY 3.0. Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, ACT.

Migwi PK, Bebe BO, Gachuiri CK, Godwin I, Nolan JV (2013) Options for efficient utilization of high fibre feed resources in low input ruminant production systems in a changing climate: a review. Livestock Research and Rural Development 25, e87

Moe PW, Tyrell HF (1975) Efficiency of conversion of digested energy to milk. Journal of Dairy Science 58, 602–610.
Efficiency of conversion of digested energy to milk.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M7lt1Smtw%3D%3D&md5=0816964b76d532df7b61065ae8c3cd62CAS | 1092740PubMed |

Mohanty SR, Bodelier PLE, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Applied and Environmental Microbiology 72, 1346–1354.
Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Ght7c%3D&md5=a48323579e5846e59e653ca8aefab974CAS | 16461686PubMed |

Monteny GJ, Bannink A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agriculture, Ecosystems & Environment 112, 163–170.
Greenhouse gas abatement strategies for animal husbandry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xktl2lsA%3D%3D&md5=ce670597cd5bf256c8304362c1804634CAS |

Montes F, Meinen R, Dell C, Rotz A, Hristov AN, Oh J, Waghorn G, Gerber PJ, Henderson B, Makkar HPS, Dijkstra J (2013) Special topics-mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. Journal of Animal Science 91, 5070–5094.
Special topics-mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKktrvN&md5=7b3fadb2dd4923fa65aa320196c18f36CAS | 24045493PubMed |

Morton SR, Stafford Smith DM, Dickman CR, Dunkerley DL, Friedel MH, McAllister RRJ, Reid JRW, Roshier DA, Smith MA, Walsh FJ, Wardle GM, Watson IW, Westoby M (2011) A fresh framework for the ecology of arid Australia. Journal of Arid Environments 75, 313–329.
A fresh framework for the ecology of arid Australia.Crossref | GoogleScholarGoogle Scholar |

Morvan B, Bonnemoy F, Fonty G, Gouet P (1996) Quantitative determination of hydrogen utilizing acetogenic and sulphate reducing bacteria and methanogenic archaea from digestive tract of different mammals. Current Microbiology 32, 129–133.
Quantitative determination of hydrogen utilizing acetogenic and sulphate reducing bacteria and methanogenic archaea from digestive tract of different mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVygsLo%3D&md5=438012a6b41aafc7f21c8fa5162a8006CAS | 8704656PubMed |

Mosier A, Schimel D, Valentine D, Bronson K, Parton W (1991) Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 350, 330–332.
Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitFehsLg%3D&md5=6207143a3e4394865a3356bf70626a20CAS |

Mosier AR, Parton WJ, Valentine DW, Ojima DS, Schimel DS, Heinemeyer O (1997) Methane and nitrous oxide fluxes in the Colorado shortgrass steppe. 2. Long-term impact of land use change. Global Biogeochemical Cycles 11, 29–42.
Methane and nitrous oxide fluxes in the Colorado shortgrass steppe. 2. Long-term impact of land use change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVyqu7Y%3D&md5=8634c627a58e6a529019b92130134dd5CAS |

Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K, Johnson DE (1998) Mitigating agricultural emissions of methane. Climatic Change 40, 39–80.
Mitigating agricultural emissions of methane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmslWgu70%3D&md5=a02fd96f468c2e1198f1dafea0161021CAS |

Mosier A, Parton W, Martin R, Valentine D, Ojima D, Schimel D, Burke I, Carol Adair E, Del Grosso S (2008) Soil–atmosphere exchange of trace gases in the Colorado short-grass steppe. In ‘Ecology of the shortgrass steppe: A long-term perspective’. (Eds WK Lauenroth, IC Burke) pp. 342–372. (Oxford University Press: Oxford, UK)

MPIGF (2008) ‘Australia’s State of the Forests Report.’ (Bureau of Rural Sciences: Canberra, ACT)

Murray RM, Bryant AM, Leng RA (1976) Rates of production of methane in the rumen and large intestine of sheep. The British Journal of Nutrition 36, 1–14.
Rates of production of methane in the rumen and large intestine of sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XkvFSqt7o%3D&md5=86613e945ea6268b4c49734c8a7251edCAS | 949464PubMed |

Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Archives of Microbiology 173, 325–332.
Molecular biology and regulation of methane monooxygenase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFKmt7s%3D&md5=1ecb0dd872e3859a07fdfdd116db4a8fCAS | 10896210PubMed |

Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In ‘Climate change 2013: the physical science basis’. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Eds TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex, PM Midgley) (Cambridge University Press: Cambridge, UK/New York)

Naser HM, Nagata O, Tamura S, Hatano R (2007) Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Science and Plant Nutrition 53, 95–101.
Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlyiurc%3D&md5=3e6771b3c064a0e863385c5355ea1abdCAS |

Nazaries L, Tate KR, Ross DJ, Singh J, Dando J, Saggar S, Baggs EM, Millard P, Murrell JC, Singh BK (2011) Response of methanotrophic communities to afforestation and reforestation in New Zealand. International Society for Microbial Ecology Journal 5, 1832–1836.

Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environmental Microbiology 15, 2395–2417.
Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVSlsbzJ&md5=185f9660e2e2ce7cc9291bd35f108d50CAS | 23718889PubMed |

Nelson KE, Zinder SH, Hance I, Burr P, Odongo D, Wasawo D, Odenyo A, Bishop R (2003) Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environmental Microbiology 5, 1212–1220.
Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche.Crossref | GoogleScholarGoogle Scholar | 14641599PubMed |

Nesbit SP, Breitenbeck GA (1992) A laboratory study of factors influencing methane uptake by soils. Agriculture, Ecosystems & Environment 41, 39–54.
A laboratory study of factors influencing methane uptake by soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlslSiu78%3D&md5=71cf977c8d85fa10b8a19ec3c3128b59CAS |

Neue HU (1993) Methane emission from rice fields. Bioscience 43, 466–474.
Methane emission from rice fields.Crossref | GoogleScholarGoogle Scholar |

Nicholson MJ, Evans PN, Joblin KN (2007) Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis: Identification of uncultured methanogens. Microbial Ecology 54, 141–150.
Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis: Identification of uncultured methanogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlWrtLw%3D&md5=f4e2a62b6bbc73ccb43066ae57c0e1efCAS | 17431710PubMed |

Nugent JHA, Mangan JL (1981) Characteristics of the rumen proteolysis of fraction-I (18S) leaf protein from lucerne (Medicago sativa L). The British Journal of Nutrition 46, 39–58.
Characteristics of the rumen proteolysis of fraction-I (18S) leaf protein from lucerne (Medicago sativa L).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXltFantr0%3D&md5=70a304da655ef6436aaa0f3481260d0cCAS |

Nyerges G, Stein LY (2009) Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiology Letters 297, 131–136.
Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2rsrs%3D&md5=17487e29706ef929f1b2e0702df69bc5CAS | 19566684PubMed |

O’Connor FM, Boucher O, Gedney N, Jones CD, Folberth GA, Coppell R, Friedlingstein P, Collins WJ, Chappellaz J, Ridley J, Johnson CE (2010) Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Reviews of Geophysics 48, RG4005
Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review.Crossref | GoogleScholarGoogle Scholar |

O’Neill JG, Wilkinson JF (1977) Oxidation of ammonia by methane-oxidizing bacteria and effects of ammonia on methane oxidation. Journal of General Microbiology 100, 407–412.
Oxidation of ammonia by methane-oxidizing bacteria and effects of ammonia on methane oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlsVynsbg%3D&md5=e16fd11b2b13c42ba3f53a8cc91dbefdCAS |

Oksanen J, Blanchet GF, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, Henry M, Stevens H, Wagner H (2013) Vegan: community ecology package. R package version 2.0-10. The R Project. Available at: http://CRAN.R-project.org/package=vegan

Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland N-K, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environmental Microbiology Reports 1, 293–306.
Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWgur0%3D&md5=7cf20fe5497d7f64c84e8e33d677e24eCAS |

Otter LB, Scholes MC (2000) Methane sources and sinks in a periodically flooded South African savanna. Global Biogeochemical Cycles 14, 97–111.
Methane sources and sinks in a periodically flooded South African savanna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVGnu7g%3D&md5=a177356a6bca8acf18b7af45bf5d92e0CAS |

Page KL, Dalal RC, Pringle MJ, Dang YP, Bell M, Radford B, Bailey K (2013) Organic carbon stocks in cropping soils of Queensland, Australia, as affected by tillage management, climate and soil characteristics. Soil Research 51, 596–607.
Organic carbon stocks in cropping soils of Queensland, Australia, as affected by tillage management, climate and soil characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvF2ktbfL&md5=abcac13fb5febba8668ea858f8ee5c2bCAS |

Pasuquin EM, Hasegawa T, Eberbach P, Reinke R, Wade LJ, Lafarge T (2013) Responses of eighteen rice (Oryza sativa L.) cultivars to temperature tested using two types of growth chambers. Plant Production Science 16, 217–225.
Responses of eighteen rice (Oryza sativa L.) cultivars to temperature tested using two types of growth chambers.Crossref | GoogleScholarGoogle Scholar |

Patra AK (2012) Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environmental Monitoring and Assessment 184, 1929–1952.
Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFOjsbw%3D&md5=07dda6b38af40f1db502c579d919cb62CAS | 21547374PubMed |

Patra AK (2014) A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep. Livestock Science 162, 97–103.
A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep.Crossref | GoogleScholarGoogle Scholar |

Perry LG, Andersen DC, Reynolds LV, Nelson SM, Shafroth PB (2012) Vulnerability of riparian ecosystems to elevated carbon dioxide and climate change in arid and semi-arid western North America. Global Change Biology 18, 821–842.
Vulnerability of riparian ecosystems to elevated carbon dioxide and climate change in arid and semi-arid western North America.Crossref | GoogleScholarGoogle Scholar |

Peter Mayer H, Conrad R (1990) Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil. FEMS Microbiology Ecology 73, 103–111.
Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil.Crossref | GoogleScholarGoogle Scholar |

Philippe FA, Laitat M, Canart B, Vandenheede M, Nicks B (2007) Comparison of ammonia and greenhouse gas emissions during the fattening of pigs, kept either on fully slatted floor or on deep litter. Livestock Science 111, 144–152.
Comparison of ammonia and greenhouse gas emissions during the fattening of pigs, kept either on fully slatted floor or on deep litter.Crossref | GoogleScholarGoogle Scholar |

Phillips RL, Whalen SC, Schlesinger WH (2001) Influence of atmospheric carbon dioxide enrichment on methane consumption in a temperate forest soil. Global Change Biology 7, 557–563.
Influence of atmospheric carbon dioxide enrichment on methane consumption in a temperate forest soil.Crossref | GoogleScholarGoogle Scholar |

Pitman AJ, Perkins SE (2008) Regional projections of future seasonal and annual changes in rainfall and temperature over Australia based on skill-selected AR(4) models. Earth Interactions 12, 1–50.
Regional projections of future seasonal and annual changes in rainfall and temperature over Australia based on skill-selected AR(4) models.Crossref | GoogleScholarGoogle Scholar |

Pitman AJ, Narisma GT, McAneney J (2007) The impact of climate change on the risk of forest and grassland fires in Australia. Climatic Change 84, 383–401.
The impact of climate change on the risk of forest and grassland fires in Australia.Crossref | GoogleScholarGoogle Scholar |

Pittelkow CM, Adviento-Borbe MA, Hill JE, Six J, van Kessel C, Linquist BA (2013) Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agriculture, Ecosystems & Environment 177, 10–20.
Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVKktbbL&md5=dc28b88548349ce3d5e462fdda2d8879CAS |

Poth M, Anderson IC, Miranda HS, Miranda AC, Riggan PJ (1995) The magnitude and persistence of soil nitric oxide, nitrous oxide, methane, and carbon monoxide fluxes from burned tropical savanna in Brazil. Global Biogeochemical Cycles 9, 503–513.
The magnitude and persistence of soil nitric oxide, nitrous oxide, methane, and carbon monoxide fluxes from burned tropical savanna in Brazil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslCktb4%3D&md5=c8a0f239306e261dc3ffa3939c856c95CAS |

Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, Hojberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nature Communications 4, 1428
Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen.Crossref | GoogleScholarGoogle Scholar | 23385573PubMed |

Prapaspongsa T, Poulsen TG, Hansen JA, Christensen P (2010) Energy production, nutrient recovery and greenhouse gas emission potentials from integrated pig manure management systems. Waste Management & Research 28, 411–422.
Energy production, nutrient recovery and greenhouse gas emission potentials from integrated pig manure management systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVOqtLc%3D&md5=52e6aea3a1e6d6b80d0110b92b5a60dfCAS |

Pratt C, Walcroft AS, Tate KR, Ross DJ, Roy R, Hills Reid M, Veiga P (2012) Biofiltration of methane emissions from a dairy farm effluent pond. Agriculture, Ecosystems & Environment 152, 33–39.
Biofiltration of methane emissions from a dairy farm effluent pond.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFSns7g%3D&md5=33954c8bd5e86eec0ed4b5063841419aCAS |

Priemé A, Christensen S, Dobbie KE, Smith KA (1997) Slow increase in rate of methane oxidation in soils with time following land use change from arable agriculture to woodland. Soil Biology & Biochemistry 29, 1269–1273.
Slow increase in rate of methane oxidation in soils with time following land use change from arable agriculture to woodland.Crossref | GoogleScholarGoogle Scholar |

Radford BJ, Thornton CM, Cowie BA, Stephens ML (2007) The Brigalow Catchment Study: III. Productivity changes on Brigalow land cleared for long-term cropping and for grazing. Australian Journal of Soil Research 45, 512–523.
The Brigalow Catchment Study: III. Productivity changes on Brigalow land cleared for long-term cropping and for grazing.Crossref | GoogleScholarGoogle Scholar |

Ratering S, Conrad R (1998) Effects of short-term drainage and aeration on the production of methane in submerged rice soil. Global Change Biology 4, 397–407.
Effects of short-term drainage and aeration on the production of methane in submerged rice soil.Crossref | GoogleScholarGoogle Scholar |

Reeburgh WS (2007) Oceanic methane biogeochemistry. Chemical Reviews 107, 486–513.
Oceanic methane biogeochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOmtr4%3D&md5=cdfb06d36847ff4bec15e6d7b935331eCAS | 17261072PubMed |

Reim A, Lueke C, Krause S, Pratscher J, Frenzel P (2012) One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic–anoxic interface in a flooded paddy soil. International Society for Microbial Ecology Journal 6, 2128–2139.

Robertson F, Nash D (2013) Limited potential for soil carbon accumulation using current cropping practices in Victoria, Australia. Agriculture, Ecosystems & Environment 165, 130–140.
Limited potential for soil carbon accumulation using current cropping practices in Victoria, Australia.Crossref | GoogleScholarGoogle Scholar |

Rotz CA, Kleinman PJA, Dell CJ, Veith TL, Beegle DB (2011) Environmental and economic comparisons of manure application methods in farming systems. Journal of Environmental Quality 40, 438–448.
Environmental and economic comparisons of manure application methods in farming systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVWqtb0%3D&md5=66fef2f868ed893d04245ad6498df6c6CAS | 21520751PubMed |

Saam H, Powell JM, Jackson-Smith DB, Bland WL, Posner JL (2005) Use of animal density to estimate manure nutrient recycling ability of Wisconsin dairy farms. Agricultural Systems 84, 343–357.
Use of animal density to estimate manure nutrient recycling ability of Wisconsin dairy farms.Crossref | GoogleScholarGoogle Scholar |

Sanchis E, Ferrer M, Torres AG, Cambra-Lopez M, Calvet S (2012) Effect of water and straw management practices on methane emissions from rice fields: a review through a meta-analysis. Environmental Engineering Science 29, 1053–1062.
Effect of water and straw management practices on methane emissions from rice fields: a review through a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKhtLzF&md5=0fd1b533d67ef0440cbe7eea68b28ed4CAS |

Scavino AF, Ji Y, Pump J, Klose M, Claus P, Conrad R (2013) Structure and function of the methanogenic microbial communities in Uruguayan soils shifted between pasture and irrigated rice fields. Environmental Microbiology 15, 2588–2602.
Structure and function of the methanogenic microbial communities in Uruguayan soils shifted between pasture and irrigated rice fields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVSlsb3J&md5=b784fa4e31ce2faf9d2055a7f3fe5f52CAS | 23763330PubMed |

Scheer C, Grace PR, Rowlings DW, Kimber S, Van Zwieten L (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant and Soil 345, 47–58.
Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFymt7o%3D&md5=214f7455fc3261f002b24833958a7ffbCAS |

Schütz H, Seiler W, Conrad R (1989) Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 7, 33–53.
Processes involved in formation and emission of methane in rice paddies.Crossref | GoogleScholarGoogle Scholar |

Schütz H, Seiler W, Conrad R (1990) Influence of soil-temperature on methane emission from rice paddy fields. Biogeochemistry 11, 77–95.
Influence of soil-temperature on methane emission from rice paddy fields.Crossref | GoogleScholarGoogle Scholar |

Seghers D, Top EM, Reheul D, Bulcke R, Boeckx P, Verstraete W, Siciliano SD (2003) Long-term effects of mineral versus organic fertilizers on activity and structure of the methanotrophic community in agricultural soils. Environmental Microbiology 5, 867–877.
Long-term effects of mineral versus organic fertilizers on activity and structure of the methanotrophic community in agricultural soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1CltL0%3D&md5=b91421d6a61e1c0f09418e468927b514CAS | 14510840PubMed |

Seghers D, Siciliano SD, Top EM, Verstraete W (2005) Combined effect of fertilizer and herbicide applications on the abundance, community structure and performance of the soil methanotrophic community. Soil Biology & Biochemistry 37, 187–193.
Combined effect of fertilizer and herbicide applications on the abundance, community structure and performance of the soil methanotrophic community.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVahu77N&md5=609b0499ecfc51b56b9717dde6826997CAS |

Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiology Reviews 34, 496–531.

SEWPaC (2014) ‘National Greenhouse Gas Inventory.’ (Department of Sustainability, Environment, Water, Population and Communities: Canberra, ACT)

Shima S, Krueger M, Weinert T, Demmer U, Kahnt J, Thauer RK, Ermler U (2012) Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481, 98–101.

Shrestha PM, Kube M, Reinhardt R, Liesack W (2009) Transcriptional activity of paddy soil bacterial communities. Environmental Microbiology 11, 960–970.
Transcriptional activity of paddy soil bacterial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlSlt70%3D&md5=d729ada351f80504915662a2e51e4ad3CAS | 19170728PubMed |

Shrestha PM, Kammann C, Lenhart K, Dam B, Liesack W (2012) Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil. International Society for Microbial Ecology Journal 6, 1115–1126.

Sigren LK, Lewis ST, Fisher FM, Sass RL (1997) Effects of field drainage on soil parameters related to methane production and emission from rice paddies. Global Biogeochemical Cycles 11, 151–162.
Effects of field drainage on soil parameters related to methane production and emission from rice paddies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslSmsr8%3D&md5=59eac352cd008b52b8a68153f8056412CAS |

Singh BK, Tate KR, Ross DJ, Singh J, Dando J, Thomas N, Millard P, Murrell JC (2009) Soil methane oxidation and methanotroph responses to afforestation of pastures with Pinus radiata stands. Soil Biology & Biochemistry 41, 2196–2205.
Soil methane oxidation and methanotroph responses to afforestation of pastures with Pinus radiata stands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKnsrfN&md5=69ae943eb0c16169881c075250b86145CAS |

Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews. Microbiology 8, 779–790.
Microorganisms and climate change: terrestrial feedbacks and mitigation options.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yrsLzL&md5=133a150a2e220d61b474d72d64214dfdCAS | 20948551PubMed |

Sitaula BK, Hansen S, Sitaula JIB, Bakken LR (2000) Methane oxidation potentials and fluxes in agricultural soil: Effects of fertilisation and soil compaction. Biogeochemistry 48, 323–339.
Methane oxidation potentials and fluxes in agricultural soil: Effects of fertilisation and soil compaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitFygsrg%3D&md5=656019542e03a5b3cad1541e252384cdCAS |

Six J, Ogle SM, Breidt FJ, Conant RT, Mosier AR, Paustian K (2004) The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biology 10, 155–160.
The potential to mitigate global warming with no-tillage management is only realized when practised in the long term.Crossref | GoogleScholarGoogle Scholar |

Skinner C, Gattinger A, Muller A, Mader P, Fliessbach A, Stolze M, Ruser R, Niggli U (2014) Greenhouse gas fluxes from agricultural soils under organic and non-organic management—a global meta-analysis. The Science of the Total Environment 468–469, 553–563.
Greenhouse gas fluxes from agricultural soils under organic and non-organic management—a global meta-analysis.Crossref | GoogleScholarGoogle Scholar | 24061052PubMed |

Smith KA, Dobbie KE, Ball BC, Bakken LR, Sitaula BK, Hansen S, Brumme R, Borken W, Christensen S, Prieme A, Fowler D, MacDonald JA, Skiba U, Klemedtsson L, Kasimir-Klemedtsson A, Degorska A, Orlanski P (2000) Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Global Change Biology 6, 791–803.
Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink.Crossref | GoogleScholarGoogle Scholar |

Sorlini C, Brusa T, Ranalli G, Ferrari A (1988) Quantitative determination of methanogenic bacteria in the feces of different mammals. Current Microbiology 17, 33–36.
Quantitative determination of methanogenic bacteria in the feces of different mammals.Crossref | GoogleScholarGoogle Scholar |

Sparkes J, Nikolova S, Yainshet A, Walcott J, Gray J, Heyhoe E, Bruce S, White S (2011) ‘Options for on-farm mitigation of greenhouse gases in Australia.’ Issue 3, 2011. (Australian Bureau of Agriculture and Resource Economics and Sciences: Canberra, ACT)

Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77, 574–581.
Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2htLnP&md5=8d5898dcbe0ac631c0924a3a2894c746CAS | 19647284PubMed |

Steinkamp R, Butterbach-Bahl K, Papen H (2001) Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany. Soil Biology & Biochemistry 33, 145–153.
Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Kmsbg%3D&md5=4c16b9ba7dbcb62ccd497bc1a366c73bCAS |

Steudler PA, Bowden RD, Melillo JM, Aber JD (1989) Influence of nitrogen-fertilization on methane uptake in temperate forest soils. Nature 341, 314–316.
Influence of nitrogen-fertilization on methane uptake in temperate forest soils.Crossref | GoogleScholarGoogle Scholar |

Stiehl-Braun PA, Powlson DS, Poulton PR, Niklaus PA (2011) Effects of N fertilizers and liming on the micro-scale distribution of soil methane assimilation in the long-term Park Grass experiment at Rothamsted. Soil Biology & Biochemistry 43, 1034–1041.
Effects of N fertilizers and liming on the micro-scale distribution of soil methane assimilation in the long-term Park Grass experiment at Rothamsted.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFCmtLk%3D&md5=cdf1d9570e34ce492a57b7074f738176CAS |

Strieg RG, McConnaughey TA, Thorstenson DC, Weeks EP, Woodward JC (1992) Consumption of atmospheric methane by desert soils. Nature 357, 145–147.
Consumption of atmospheric methane by desert soils.Crossref | GoogleScholarGoogle Scholar |

Suwanwaree P, Robertson GP (2005) Methane oxidation in forest, successional, and no-till agricultural ecosystems. Soil Science Society of America Journal 69, 1722
Methane oxidation in forest, successional, and no-till agricultural ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1WrurjM&md5=78ae28b8b2d8fe3f935ddc41e50eb4d5CAS |

Tajima K, Nagamine T, Matsui H, Nakamura M, Aminov RI (2001) Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiology Letters 200, 67–72.
Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlWmt78%3D&md5=220df25cb97c0652c16228ffc5e0f2e6CAS | 11410351PubMed |

Teepe R, Brumme R, Beese F, Ludwig B (2004) Nitrous oxide emission and methane consumption following compaction of forest soils. Soil Science Society of America Journal 68, 605–611.
Nitrous oxide emission and methane consumption following compaction of forest soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitV2ntbo%3D&md5=7ce1c905decc16209d1241d85ccd3069CAS |

Thauer R, Hedderich R, Fischer R (1993) Reactions and enzymes involved in methanogenesis from carbon dioxide and hydrogen gas. In ‘Methanogenesis’. (Ed. JG Ferry) pp. 209–252. (Chapman and Hall: New York, London)

Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews. Microbiology 6, 579–591.
Methanogenic archaea: ecologically relevant differences in energy conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFSktLs%3D&md5=1d367939e1739374dafd97bb28dea726CAS | 18587410PubMed |

Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Molecular Microbiology 58, 682–692.
Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1WrtbfE&md5=c3feca46a8dd0b26806cd8c5267a4adeCAS | 16238619PubMed |

Torn MS, Harte J (1996) Methane consumption by montane soils: implications for positive and negative feedback with climatic change. Biogeochemistry 32, 53–67.
Methane consumption by montane soils: implications for positive and negative feedback with climatic change.Crossref | GoogleScholarGoogle Scholar |

Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. In ‘Advances in applied microbiology’. Vol. 63. (Ed. AI Laskin, S Sariaslani, GM Gadd) pp. 183–229. (Elsevier: Amsterdam)

Ugalde D, Brungs A, Kaebernick M, McGregor A, Slattery B (2007) Implications of climate change for tillage practice in Australia. Soil & Tillage Research 97, 318–330.
Implications of climate change for tillage practice in Australia.Crossref | GoogleScholarGoogle Scholar |

Ulyatt MJ, Lassey KR, Shelton ID, Walker CF (2002) Methane emission from dairy cows and wether sheep fed subtropical grass-dominant pastures in midsummer in New Zealand. New Zealand Journal of Agricultural Research 45, 227–234.
Methane emission from dairy cows and wether sheep fed subtropical grass-dominant pastures in midsummer in New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVykt7Y%3D&md5=35cb14ac79d15b4ef1b986459032b979CAS |

Urmann K, Lazzaro A, Gandolfi I, Schroth MH, Zeyer J (2009) Response of methanotrophic activity and community structure to temperature changes in a diffusive methane/oxygen counter gradient in an unsaturated porous medium. FEMS Microbiology Ecology 69, 202–212.
Response of methanotrophic activity and community structure to temperature changes in a diffusive methane/oxygen counter gradient in an unsaturated porous medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1elsLY%3D&md5=7b616517655a9b6e300719cbcec8a0d2CAS | 19496819PubMed |

Van Niel TG, McVicar TR (2004) Current and potential uses of optical remote sensing in rice-based irrigation systems: a review. Australian Journal of Agricultural Research 55, 155–185.
Current and potential uses of optical remote sensing in rice-based irrigation systems: a review.Crossref | GoogleScholarGoogle Scholar |

Verchot LV, Davidson EA, Catt E, Nio JH, Ackerman IL (2000) Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia. Ecosystems 3, 41–56.
Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFalsLk%3D&md5=7ede40138684a7c629397b74a4a17772CAS |

Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. International Journal of Systematic and Evolutionary Microbiology 61, 2456–2463.
Methyloferula stellata gen. nov., sp nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2nsrvI&md5=e8d43895db80034cb13a6b70f21bc9d8CAS | 21097638PubMed |

Wang B, Neue HU, Samonte HP (1997) Effect of cultivar difference (‘IR72’, ‘IR65598’ and ‘Dular’) on methane emission. Agriculture, Ecosystems & Environment 62, 31–40.
Effect of cultivar difference (‘IR72’, ‘IR65598’ and ‘Dular’) on methane emission.Crossref | GoogleScholarGoogle Scholar |

Wang WJ, Dalal RC, Moody PW (2004) Soil carbon sequestration and density distribution in a vertosol under different farming practices. Australian Journal of Soil Research 42, 875–882.
Soil carbon sequestration and density distribution in a vertosol under different farming practices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOqsLbP&md5=ab0d51d6d9e55a7a6bf9f4f2d0524e6cCAS |

Wang YS, Xue M, Zheng XH, Ji BM, Du R, Wang YF (2005) Effects of environmental factors on nitrous oxide emission from and methane uptake by the typical grasslands in the Inner Mongolia. Chemosphere 58, 205–215.
Effects of environmental factors on nitrous oxide emission from and methane uptake by the typical grasslands in the Inner Mongolia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVahu7rP&md5=3f021ce1c3647c9f860d726ca65a2167CAS |

Wang W, Dalal RC, Reeves SH, Butterbach-Bahl K, Kiese R (2011) Greenhouse gas fluxes from an Australian subtropical cropland under long-term contrasting management regimes. Global Change Biology 17, 3089–3101.
Greenhouse gas fluxes from an Australian subtropical cropland under long-term contrasting management regimes.Crossref | GoogleScholarGoogle Scholar |

Wang ZP, Chang SX, Chen H, Han XG (2013) Widespread non-microbial methane production by organic compounds and the impact of environmental stresses. Earth-Science Reviews 127, 193–202.
Widespread non-microbial methane production by organic compounds and the impact of environmental stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFeksrzK&md5=16979652b291be29575828e577687f02CAS |

Wassmann R, Aulakh MS (2000) The role of rice plants in regulating mechanisms of methane missions. Biology and Fertility of Soils 31, 20–29.
The role of rice plants in regulating mechanisms of methane missions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvF2mtbg%3D&md5=c90c322f332ea8acfa932848f35eb022CAS |

Watanabe A, Kimura M (1998) Factors affecting variation in methane emission from paddy soils grown with different rice cultivars: A pot experiment. Journal of Geophysical Research, D, Atmospheres 103, 18947–18952.
Factors affecting variation in methane emission from paddy soils grown with different rice cultivars: A pot experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVKqsrw%3D&md5=fd5e9faa661887347c0a79330a93060cCAS |

Watanabe A, Takeda T, Kimura M (1999) Evaluation of origins of methane carbon emitted from rice paddies. Journal of Geophysical Research, D, Atmospheres 104, 23623–23629.
Evaluation of origins of methane carbon emitted from rice paddies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntleht78%3D&md5=770a4a0a398ba173fc3bb9a8cdff8ed3CAS |

Webster G, Blazejak A, Cragg BA, Schippers A, Sass H, Rinna J, Tang XH, Mathes F, Ferdelman TG, Fry JC, Weightman AJ, Parkes RJ (2009) Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). Environmental Microbiology 11, 239–257.
Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1equ7c%3D&md5=151ed482e641b322546695349fe9fdd8CAS | 18826439PubMed |

Weier KL (1999) Nitrous oxide and methane emission and methane consumption in a sugarcane soil after variation in nitrogen and water application. Soil Biology & Biochemistry 31, 1931–1941.
Nitrous oxide and methane emission and methane consumption in a sugarcane soil after variation in nitrogen and water application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntVOitb0%3D&md5=042353a706c24bfaacd60cc9e8e203f7CAS |

Weiske A, Benckiser G, Herbert T, Ottow JCG (2001) Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biology and Fertility of Soils 34, 109–117.
Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlyqtL4%3D&md5=fd35a1a0cff5a58112827026cb2e3cabCAS |

Whittenbury R, Phillips KC, Wilkinson J (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. Journal of General Microbiology 61, 205–218.
Enrichment, isolation and some properties of methane-utilizing bacteria.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3M%2FislajsA%3D%3D&md5=0662cf0f0406ee4f0bffa509fd24eca7CAS | 5476891PubMed |

Wilkinson KG (2011) A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia. Biomass and Bioenergy 35, 1613–1622.
A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia.Crossref | GoogleScholarGoogle Scholar |

Willison TW, Webster CP, Goulding KWT, Powlson DS (1995) Methane oxidation in temperate soils - effects of land-use and the chemical form of nitrogen-fertilizer. Chemosphere 30, 539–546.
Methane oxidation in temperate soils - effects of land-use and the chemical form of nitrogen-fertilizer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjslWjs7w%3D&md5=93c377c7fda7397dd3734cea99374d33CAS |

Wise MG, McArthur JV, Shimkets LJ (1999) Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Applied and Environmental Microbiology 65, 4887–4897.

Wright ADG, Kennedy P, O’Neill CJ, Toovey AF, Popovski S, Rea SM, Pimm CL, Klein L (2004) Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22, 3976–3985.
Reducing methane emissions in sheep by immunization against rumen methanogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFGns7s%3D&md5=36685cc7289138fd63e0b3ca94d87c0bCAS |

Wright ADG, Ma XL, Obispo NE (2008) Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela. Microbial Ecology 56, 390–394.
Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela.Crossref | GoogleScholarGoogle Scholar |

Wu XL, Conrad R (2001) Functional and structural response of a cellulose-degrading methanogenic microbial community to multiple aeration stress at two different temperatures. Environmental Microbiology 3, 355–362.
Functional and structural response of a cellulose-degrading methanogenic microbial community to multiple aeration stress at two different temperatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1SktLY%3D&md5=af8b42e5aaccbd1fed459f9335683385CAS | 11472500PubMed |

Wu XL, Chin KJ, Conrad R (2002) Effect of temperature stress on structure and function of the methanogenic archaeal community in a rice field soil. FEMS Microbiology Ecology 39, 211–218.
Effect of temperature stress on structure and function of the methanogenic archaeal community in a rice field soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFOjurw%3D&md5=8c59ae0c03159468dc4ea86efc7f1a32CAS | 19709200PubMed |

Wu LQ, Ma K, Li Q, Ke XB, Lu YH (2009) Composition of archaeal community in a paddy field as affected by rice cultivar and N fertilizer. Microbial Ecology 58, 819–826.
Composition of archaeal community in a paddy field as affected by rice cultivar and N fertilizer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlKitLfN&md5=951e2ed3a1be58a5cb28e7cc15dbee75CAS |

Wu X, Yao Z, Brüggemann N, Shen ZY, Wolf B, Dannenmann M, Zheng X, Butterbach-Bahl K (2010) Effects of soil moisture and temperature on carbon dioxide and methane soil–atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China. Soil Biology & Biochemistry 42, 773–787.
Effects of soil moisture and temperature on carbon dioxide and methane soil–atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1emu7w%3D&md5=0b6a8b19f4e3205b5506586b8f67539fCAS |

Yagi K, Tsuruta H, Kanda K, Minami K (1996) Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring. Global Biogeochemical Cycles 10, 255–267.
Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1Khsbc%3D&md5=52a5a3d3437354b83b66372c7569f2f8CAS |

Yan XY, Akiyama H, Yagi K, Akimoto H (2009) Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Global Biogeochemical Cycles 23, GB2002
Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines.Crossref | GoogleScholarGoogle Scholar |

Yao H, Conrad R (1999) Thermodynamics of methane production in different rice paddy soils from China, the Philippines and Italy. Soil Biology & Biochemistry 31, 463–473.
Thermodynamics of methane production in different rice paddy soils from China, the Philippines and Italy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVOqtb0%3D&md5=96d8e6a16f5dc91fb3687136ac1240a5CAS |

Zhang W, Zhu X, Liu L, Fu S, Chen H, Huang J, Lu X, Liu Z, Mo J (2012) Large difference of inhibitive effect of nitrogen deposition on soil methane oxidation between plantations with N-fixing tree species and non-N-fixing tree species. Journal of Geophysical Research 117, G00N16
Large difference of inhibitive effect of nitrogen deposition on soil methane oxidation between plantations with N-fixing tree species and non-N-fixing tree species.Crossref | GoogleScholarGoogle Scholar |

Zhou M, Hernandez-Sanabria E, Guan LL (2009) Assessment of microbial ecology of ruminal methane producers and cattle’s high feed efficiency and low methane production activities. Applied and Environmental Microbiology 75, 6524–6533.
Assessment of microbial ecology of ruminal methane producers and cattle’s high feed efficiency and low methane production activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2itL%2FK&md5=68f47d846fe4da1f3990eb487255478eCAS | 19717632PubMed |

Zhu B, van Dijk G, Fritz C, Smolders AJP, Pol A, Jetten MSM, Ettwig KF (2012) Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria. Applied and Environmental Microbiology 78, 8657–8665.
Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslyjsrzK&md5=db182dd5ff1b046cd5addbb69e45427aCAS | 23042166PubMed |

Zinder SH, Anguish T, Cardwell SC (1984) Selective inhibition by 2-Bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digester. Applied and Environmental Microbiology 47, 1343–1345.