Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Development of a TILLING resource in durum wheat for reverse- and forward-genetic analyses

R. Bovina A , A. Brunazzi A , G. Gasparini A , F. Sestili B , S. Palombieri B , E. Botticella B , D. Lafiandra B , P. Mantovani A and A. Massi A C
+ Author Affiliations
- Author Affiliations

A Società Produttori Sementi S.p.A., Via Macero 1, 40050 Argelato, Bologna, Italy.

B Department of Science and Technology for Agriculture, Forest, Nature and Energy (DAFNE), Tuscia University, Via San Camillo de Lellis s.n.c., 01100 Viterbo, Italy.

C Corresponding author. Email: a.massi@prosementi.com

Crop and Pasture Science 65(1) 112-124 https://doi.org/10.1071/CP13226
Submitted: 28 June 2013  Accepted: 20 October 2013   Published: 13 January 2014

Abstract

A durum wheat TILLING (targeting induced local lesions in genomes) population of 2601 M3 families was developed from cv. Svevo using ethyl methanesulfonate as a chemical mutagen. The entire M3 population was field-grown for phenotypic evaluations. Despite the polyploid nature of the wheat genome, a preliminarily phenotypic screening showed a high frequency of morphological alterations (~22%); specific phenotyping for seed morphology was undertaken. Furthermore, a reverse-genetics experiment was performed on DNA collected from M2 leaves for the homoeologous genes SBEIIa-A and SBEIIa-B involved in starch metabolism. One non-sense mutation for both genes was identified; specific crosses are planned in order to pyramid the two mutations.

Additional keywords: tilling, forward-genetics, reverse-genetics, Triticum durum, Svevo.


References

Allan RE (1989) Agronomic comparisons between Rht1 and Rht2 semidwarf genes in winter wheat. Crop Science 29, 1103–1108.
Agronomic comparisons between Rht1 and Rht2 semidwarf genes in winter wheat.Crossref | GoogleScholarGoogle Scholar |

Botticella E, Sestili F, Hernandez-Lopez A, Phillips A, Lafiandra D (2011) High resolution melting analysis for the detection of EMS induced mutations in wheat SBEIIa genes. BMC Plant Biology 11, 156
High resolution melting analysis for the detection of EMS induced mutations in wheat SBEIIa genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFahtA%3D%3D&md5=76462e907776149ccc17d2e6a94631ebCAS | 22074448PubMed |

Botwright TL, Rebetzke GJ, Condon AG, Richards RA (2005) Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigor in wheat (Triticum aestivum L.). Annals of Botany 95, 631–639.
Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigor in wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVOnsLo%3D&md5=35600892767193a3d3aaaf890c3b8577CAS | 15655105PubMed |

Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). The Plant Journal 40, 143–150.
A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFSgtbo%3D&md5=ce7d2d9b142dc1e412ae0b7190cf102dCAS | 15361148PubMed |

Campbell GM, Fang C, Muhamad II (2007) On predicting roller milling performance VI: Effect of kernel hardness an shape on the particle size distribution from first break milling of wheat. Food and Bioproducts Processing 85, 7–23.
On predicting roller milling performance VI: Effect of kernel hardness an shape on the particle size distribution from first break milling of wheat.Crossref | GoogleScholarGoogle Scholar |

Chawade A, Sikora P, Bräutigam M, Larsson M, Vivekanand V, Nakash MA, Chen T, Olsson O (2010) Development and characterization of an oat TILLING-population and identification of mutations in lignin and beta-glucan biosynthesis genes. BMC Plant Biology 10, 86
Development and characterization of an oat TILLING-population and identification of mutations in lignin and beta-glucan biosynthesis genes.Crossref | GoogleScholarGoogle Scholar | 20459868PubMed |

Chen L, Huang L, Min D, Phillips A, Wang S, Madgwick PJ, Parry MA, Hu YG (2012) Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L.). PLoS One 7, e41570
Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSkur7M&md5=cf94df31ac84cf61efa9d4d99688c856CAS | 22844501PubMed |

Chen L, Phillips AL, Condon AG, Parry MA, Hu YG (2013) GA-responsive dwarfing gene Rht12 affects the developmental and agronomic traits in common bread wheat. PLoS ONE 8, e62285
GA-responsive dwarfing gene Rht12 affects the developmental and agronomic traits in common bread wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntlCks7w%3D&md5=63e0a6d59f249d6e007ade06c4d73cabCAS | 23658622PubMed |

Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu KD, Meksem K, Comai L, Henikoff S (2008) TILLING to detect induced mutations in soybean. BMC Plant Biology 8, 9
TILLING to detect induced mutations in soybean.Crossref | GoogleScholarGoogle Scholar | 18218134PubMed |

De Ambrogio E, Jenabzadeh P (1987) Il test di micro-sedimentazione in SDS nell’analisi della qualità del grano tenero. Tecnica Molitoria 273–276.

Dong C, Vincent K, Sharp P (2009) Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor®. BMC Plant Biology 9, 143
Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor®.Crossref | GoogleScholarGoogle Scholar | 19958559PubMed |

Evers AD, Cox RI, Shaheedullah MZ, Withey RP (1990) Predicting milling extraction rate by image analysis of wheat grains. Aspects of Applied Biology 25, 417–426.

Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics 112, 1164–1171.
GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVSmtLs%3D&md5=c65b79ccab99a1d6e7e7ba18bf099d53CAS | 16453132PubMed |

FAO (2012) ‘FAO Statistical Yearbook 2012.World food and agriculture.’ (Food and Agriculture Organization of United Nations: Rome)

Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proceedings of the National Academy of Sciences of the United States of America 107, 13544–13549.
A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GmsLzN&md5=5242a357bcf97ad0755c02b352c19423CAS | 20624958PubMed |

Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. The Plant Cell 22, 1046–1056.
A genetic framework for grain size and shape variation in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsV2isr4%3D&md5=6d98895432ae3e544d006890f887d277CAS | 20363770PubMed |

Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164, 731–740.

Hazard B, Zhang X, Colasuonno P, Uauy C, Beckles DM, Dubcovsky J (2012) Induced mutations in the starch branching enzyme II (SBEII) genes increase amylose and resistant starch content in pasta wheat. Crop Science 52, 1754–1766.

Hedden P (2003) The genes of the Green Revolution. Trends in Genetics 19, 5–9.
The genes of the Green Revolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFaqtL4%3D&md5=9028b3336251ecf52ecc12750efeac74CAS | 12493241PubMed |

Isidro J, Knox R, Clarke F, Singh A, DePauw R, Clarke J, Somers D (2012) Quantitative genetic analysis and mapping of leaf angle in durum wheat. Planta 236, 1713–1723.
Quantitative genetic analysis and mapping of leaf angle in durum wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12gsL3K&md5=fbb6e6a086da3dee8fbfa3c746207f19CAS | 22868576PubMed |

Johal GS, Hulbert SH, Briggs SP (1995) Disease lesion mimics of maize—a model for cell death in plants. BioEssays 17, 685–692.
Disease lesion mimics of maize—a model for cell death in plants.Crossref | GoogleScholarGoogle Scholar |

Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J (2010) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theoretical and Applied Genetics 120, 753–763.
Cloning and characterization of a putative GS3 ortholog involved in maize kernel development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1SmtLY%3D&md5=27235ca971f9c957f3d4c090e3f8f080CAS | 19898828PubMed |

Lorrain S, Vailleau F, Balagué C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends in Plant Science 8, 263–271.
Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksF2hurw%3D&md5=c7aaf9c87956627b729b95ff5f881977CAS | 12818660PubMed |

Maccaferri M, Sanguineti MC, Donini P, Tuberosa R (2003) Microsatellite analyses reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theoretical and Applied Genetics 107, 783–797.
Microsatellite analyses reveals a progressive widening of the genetic basis in the elite durum wheat germplasm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFantb4%3D&md5=6716a4048a5cd57c010e60acfc84ca07CAS | 12845433PubMed |

Maccaferri M, Sanguineti MC, Corneti S, Ortega JL, Salem MB, Bort J, DeAmbrogio E, del Moral LF, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178, 489–511.
Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability.Crossref | GoogleScholarGoogle Scholar | 18202390PubMed |

McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nature Biotechnology 18, 455–457.
Targeted screening for induced mutations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1Gls7k%3D&md5=118840629d3cacba309f5594f6065af1CAS | 10748531PubMed |

Morris CF, Paszczynska B, Bettge AD, King GE (2007) A critical examination of the sodium dodecyl sulfate (SDS) sedimentation test for wheat meals. Journal of the Science of Food and Agriculture 87, 607–615.
A critical examination of the sodium dodecyl sulfate (SDS) sedimentation test for wheat meals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Ghs7w%3D&md5=6479884377ae2128117491eb0e2152c2CAS |

Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research 31, 3812–3814.
SIFT: Predicting amino acid changes that affect protein function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVWjs7s%3D&md5=0a0a8f1db597efb45f398198584937deCAS | 12824425PubMed |

Nomura T, Ishihara A, Yanagita RC, Endo TR, Iwamura H (2005) Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America 102, 16490–16495.
Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CgurnJ&md5=a5485577144ad458b1f1077d90c0496cCAS | 16260753PubMed |

Okabe Y, Asamizu E, Saito T, Matsukura C, Ariizumi T, Brès C, Rothan C, Mizoguchi T, Ezura H (2011) Tomato TILLING technology: development of a reverse genetics tool for the efficient isolation of mutants from micro-tom mutant libraries. Plant & Cell Physiology 52, 1994–2005.
Tomato TILLING technology: development of a reverse genetics tool for the efficient isolation of mutants from micro-tom mutant libraries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOjs7nJ&md5=8651c9749efaa6e7cc84439aff3e680aCAS |

Parry MA, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. Journal of Experimental Botany 60, 2817–2825.
Mutation discovery for crop improvement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFWjurw%3D&md5=175a7725b945e38dac92a3241dae207dCAS | 19516074PubMed |

Rahman S, Regina A, Li Z, Mukai Y, Yamamoto M, Kosar-Hashemi B, Abraham S, Matthew K (2001) Morell comparison of starch-branching enzyme genes reveals evolutionary relationships among isoforms. Characterization of a gene for starch-branching enzyme IIa from the wheat D genome donor Aegilops tauschii. Plant Physiology 125, 1314–1324.
Morell comparison of starch-branching enzyme genes reveals evolutionary relationships among isoforms. Characterization of a gene for starch-branching enzyme IIa from the wheat D genome donor Aegilops tauschii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitFWrtLo%3D&md5=4c391105b3dddee127d9bfbafbfb28d4CAS | 11244112PubMed |

Rakszegi M, Kisgyörgy B, Tearall K, Shewry P, Láng L, Phillips A, Bedő Z (2010) Diversity of agronomic and morphological traits in a mutant population of bread wheat studied in the Healthgrain program. Euphytica 174, 409–421.
Diversity of agronomic and morphological traits in a mutant population of bread wheat studied in the Healthgrain program.Crossref | GoogleScholarGoogle Scholar |

Rawat N, Sehgal SK, Joshi A, Rothe N, Wilson DL, McGraw N, Vadlani PV, Li W, Gill BS (2012) A diploid wheat TILLING resource for wheat functional genomics. BMC Plant Biology 12, 205
A diploid wheat TILLING resource for wheat functional genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVSqsro%3D&md5=0a5cc5159d38d57e8608bf01dc6ae0b8CAS | 23134614PubMed |

Rock CD, Ng PPF (1999) Dominant wilty mutants Zea mays (Poaceae) are not impaired in abscisic acidperception or metabolism. American Journal of Botany 86, 1796–1800.
Dominant wilty mutants Zea mays (Poaceae) are not impaired in abscisic acidperception or metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks12jsA%3D%3D&md5=8fa17f7e01c4069b18b98660cffb7cfdCAS | 10602771PubMed |

Rostoks N, Schmierer D, Mudie S, Drader T, Brueggeman R, Caldwell DG, Waugh R, Kleinhofs A (2006) Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Molecular Genetics and Genomics 275, 159–168.
Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSqtb0%3D&md5=8f58b776fbbb46174d7cbbc29e493d64CAS | 16341885PubMed |

Salina E, Börner A, Leonova I, Korzun V, Laikova L, Maystrenko O, Röder MS (2000) Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theoretical and Applied Genetics 100, 686–689.
Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1Kjsr8%3D&md5=64c730c099a11c270fdc81dc4e56a8c6CAS |

Sestili F, Botticella E, Bedo Z, Phillips A, Lafiandra D (2010a) Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Molecular Breeding 25, 145–154.
Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVCmtw%3D%3D&md5=48731d335e669954c21a4bbdda5cb07cCAS |

Sestili F, Janni M, Doherty A, Botticella E, D’Ovidio R, Masci S, Jones HD, Lafiandra D (2010b) Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biology 10, 144
Increasing the amylose content of durum wheat through silencing of the SBEIIa genes.Crossref | GoogleScholarGoogle Scholar | 20626919PubMed |

Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics 40, 1023–1028.
Deletion in a gene associated with grain size increased yields during rice domestication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVKkurY%3D&md5=891929ff80954cb660c37f2dd640df35CAS | 18604208PubMed |

Sikora P, Chawade A, Larsson M, Olsson J, Olsson O (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International Journal of Plant Genomics 2011, 314829
Mutagenesis as a tool in plant genetics, functional genomics, and breeding.Crossref | GoogleScholarGoogle Scholar | 22315587PubMed |

Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nature Biotechnology 23, 75–81.
A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFGntg%3D%3D&md5=2f910b3eed78fda6333fbf25b83175abCAS | 15580263PubMed |

Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics 39, 623–630.
A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFersLk%3D&md5=8b0e55951099d95fe40620dcdb9e721eCAS | 17417637PubMed |

Sourdille P, Cadalen T, Gay G, Gill B, Bernard M (2002) Molecular and physical mapping of genes affecting awning in wheat. Plant Breeding 121, 320–324.
Molecular and physical mapping of genes affecting awning in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xoslynsb4%3D&md5=b1c6afd7f43ce1adc930d6aae2e5ca6fCAS |

Stephenson P, Baker D, Girin T, Perez A, Amoah S, King GJ, Østergaard L (2010) A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biology 10, 62
A rich TILLING resource for studying gene function in Brassica rapa.Crossref | GoogleScholarGoogle Scholar | 20380715PubMed |

Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182, 1323–1334.
Evolutionary history of GS3, a gene conferring grain length in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGkur7K&md5=ac8b03e8370029afb5f586d85c341c38CAS | 19506305PubMed |

Talamè V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnology Journal 6, 477–485.
TILLMore, a resource for the discovery of chemically induced mutants in barley.Crossref | GoogleScholarGoogle Scholar | 18422888PubMed |

Taylor NE, Greene EA (2003) A tool for the analysis of nucleotide polymorphisms. Nucleic Acids Research 31, 3808–3811.
A tool for the analysis of nucleotide polymorphisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVWjur4%3D&md5=d41020a69a97e790aa4e8ad91bce734fCAS | 12824424PubMed |

Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biology 4, 12
Discovery of induced point mutations in maize genes by TILLING.Crossref | GoogleScholarGoogle Scholar | 15282033PubMed |

Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biology 7, 19
Discovery of chemically induced mutations in rice by TILLING.Crossref | GoogleScholarGoogle Scholar | 17428339PubMed |

Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ, Lieberman M, Fass J, Uauy C, Tran RK, Khan AA, Filkov V, Tai TH, Dubcovsky J, Comai L (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiology 156, 1257–1268.
Discovery of rare mutations in populations: TILLING by sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWksrg%3D&md5=b44d692ab7c5a0f925e806769bb2ee02CAS | 21531898PubMed |

Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biology 9, 115
A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat.Crossref | GoogleScholarGoogle Scholar | 19712486PubMed |

Verlotta A, De Simone V, Mastrangelo AM, Cattivelli L, Papa R, Trono D (2010) Insight into durum wheat Lpx-B1: a small gene family coding for the lipoxygenase responsible for carotenoid bleaching in mature grains. BMC Plant Biology 10, 263
Insight into durum wheat Lpx-B1: a small gene family coding for the lipoxygenase responsible for carotenoid bleaching in mature grains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFagtrjE&md5=ef37863e905cec2c9134c1365c6979bdCAS | 21110856PubMed |

Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MR, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H (2005) Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Molecular Biology 59, 85–97.
Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2ksbnK&md5=72d7e7f0d74d80959deabb4138185dadCAS | 16217604PubMed |

Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biology 8, 103
Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population.Crossref | GoogleScholarGoogle Scholar | 18854043PubMed |

Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Research 14, 415–421.
A decimal code for the growth stages of cereals.Crossref | GoogleScholarGoogle Scholar |