Cognitive tools to support learning about farming system management: a case study in grazing systems
Michel Duru A C and Roger Martin-Clouaire BA INRA, UMR 1248 AGIR, BP 52627, F-31326 Castanet Tolosan, France.
B INRA, UR875 Biométrie et Intelligence Artificielle, BP 52627, F-31326 Castanet Tolosan, France.
C Corresponding author. Email: mduru@toulouse.inra.fr
Crop and Pasture Science 62(9) 790-802 https://doi.org/10.1071/CP11121
Submitted: 6 May 2011 Accepted: 7 September 2011 Published: 10 November 2011
Abstract
The complex challenge of farm management has prompted a search for ways in which scientific knowledge can be acquired and combined with practical know-how and experience to enhance the adaptability, profitability and environmental soundness of agricultural systems. Cognitive tools offer a kind of model-based learning support that facilitates and stimulates critical thinking about the functioning of agricultural production processes and the ways to control them in various and changing situations. The purpose of this paper is to delineate, illustrate and analyse the concept of cognitive tool together with the learning process and conditions in which such a tool would be used. We review three such tools built to help understand, improve, adapt or design grazing management practices in pasture-based livestock farms. For each of them we examine the knowledge content of the tool, the way it is represented, the kind of use and the nature of the support it provides to its users.
Additional keywords: biophysical processes, grazing systems, learning, model, production management.
References
Argyris C, Schön D (1992) ‘Organizational learning: a theory of action perspective.’ (Addison Wesley: Reading, MA)Ascough JC, Dunn GH, McMaster GS, Ahuja LR, Anadales AA (2005) Producers, decision support systems, and GPFARM: lessons learned from a decade of development. In ‘Modelling and Simulation Society of Australia and New Zealand. Proceedings of MODSIM05 International Congress on Modelling and Simulation’. (Eds A Zerger, RM Argent) pp. 170–176. (Modelling and Simulation Society of Australia and New Zealand: Canberra)
Blanfort V, Duru M, Lecomte P, Chia E, Choisis JP (2009) Produire des connaissances actionnables: le cas d’outils de gestion du pâturage. In ‘Concevoir et Construire la Décision. Démarche en Agriculture Agroalimentaire et Espace Rural’. Quae, Paris. (Eds E Turckheim, B Hubert, A Messéan) pp. 147–166. (Quae Versailles: France)
Brodt S, Klonsky K, Tourte L (2006) Farmer goals and management styles: implications for advancing biologically based agriculture. Agricultural Systems 89, 90–105.
| Farmer goals and management styles: implications for advancing biologically based agriculture.Crossref | GoogleScholarGoogle Scholar |
Bunyatta DK, Mureithi JG, Onyango CA, Ngesa FU (2006) Farmer field school effectiveness for soil and crop management technologies in Kenya. Journal of International Agricultural and Extension Education 13, 47–64.
Coléno F, Duru M (2005) L’apport de la gestion de production aux sciences agronomiques pour l’étude du fonctionnement et des transformations des systèmes techniques de production. Exemple de l’utilisation du territoire dans les systèmes d’élevage. Nature Sciences Sociétés 13, 247–257.
Cros MJ, Duru M, Peyre D (2001) SEPATOU, un simulateur de conduites du pâturage à l’épreuve des menus bretons. Fourrages 167, 365–383.
Cros MJ, Duru M, Garcia F, Martin-Clouaire R (2003) A biophysical dairy farm model to evaluate rotational grazing management strategies. Agronomie 23, 105–122.
| A biophysical dairy farm model to evaluate rotational grazing management strategies.Crossref | GoogleScholarGoogle Scholar |
Cros MJ, Duru M, Garcia F, Martin-Clouaire R (2004) Simulating management strategies: the rotational grazing example. Agricultural Systems 80, 23–42.
| Simulating management strategies: the rotational grazing example.Crossref | GoogleScholarGoogle Scholar |
Defrance P, Delaby L, Seuret JM (2005) Herb’Avenir: un outil simple d’aide à la décision pour la gestion du pâturage. In ‘Proceedings of Rencontres Recherches Ruminants’. (Institut de l’Elevage and INRA: Paris)
Duru M, Ducrocq H (2002) A model of lamina digestibility of orchardgrass as influenced by nitrogen and defoliation. Crop Science 42, 214–223.
| A model of lamina digestibility of orchardgrass as influenced by nitrogen and defoliation.Crossref | GoogleScholarGoogle Scholar |
Duru M, Ducrocq H, Bossuet L (2000) Herbage volume per animal: a tool for rotational grazing management. Journal of Range Management 53, 395–402.
| Herbage volume per animal: a tool for rotational grazing management.Crossref | GoogleScholarGoogle Scholar |
Duru M, Chia E, Chertier A (2008) Comment produire des outils utilisables dans le développement agricole. Le cas d’un outil pour la gestion des pâturages. In ‘Outils pour la gestion des prairies permanentes’. (Eds P Cruz, C Jouany, JP Theau) pp. 267–288. (Les cahiers d’Orphée, INRA: Toulouse)
Duru M, Adam M, Cruz P, Martin G, Ansquer P, Ducourtieux C, Jouany C, Theau JP, Viegas J (2009) Modelling above-ground herbage mass for a wide range of grassland community types. Ecological Modelling 220, 209–225.
| Modelling above-ground herbage mass for a wide range of grassland community types.Crossref | GoogleScholarGoogle Scholar |
Duru M, Cruz P, Martin G, Theau JP, Charron-Moirez MH, Desange M, Jouany C, Zerourou A (2010) Herb’sim: un modèle pour raisonner la production et l’utilisation de l’herbe. Fourrages 201, 37–46.
Eckert E, Bell A (2005) Invisible force: farmer’s mental models and how they influence learning and actions. Journal of Extension 43, Available at http://www.joe.org/joe/2005june/a2.php
Edwards JS, Alifantis T, Hurrion RD, Ladbrook J, Robinson S, Waller A (2004) Using a simulation model for knowledge elicitation and knowledge management. Simulation Modelling Practice and Theory 12, 527–540.
| Using a simulation model for knowledge elicitation and knowledge management.Crossref | GoogleScholarGoogle Scholar |
Hagmayer Y, Meder B, Osman M, Mangold S, Lagnado D (2010) Spontaneous causal learning while controlling a dynamic system. The Open Psychology Journal 3, 145–162.
| Spontaneous causal learning while controlling a dynamic system.Crossref | GoogleScholarGoogle Scholar |
Hayman P (2004) Decision support systems in Australian dryland farming: a promising past, a disappointing present and uncertain future. In ‘New directions for a diverse planet. Proceedings of the 4th International Crop Science Congress’. Brisbane, Australia. (Eds T Fischer, N Turner, J Angus, L McIntyre, M Robertson, A Borrell, D Lloyd) (The Regional Institute Ltd: Gosford, NSW). Available at: www.cropscience.org.au/icsc2004/images/srcpdf.gif
Hodgson J (1985) The significance of sward characteristics in the management of temperate sown pasture. In ‘Proceedings of XVth International Grassland Congress’. Kyoto, 24–31 August. pp. 63–66. (The Japanese Society of Grassland Science: Niishi-nasuno, Japan)
Jakku E, Thorburn PJ (2010) A conceptual framework for guiding the participatory development of agricultural decision support systems. Agricultural Systems 103, 675–682.
| A conceptual framework for guiding the participatory development of agricultural decision support systems.Crossref | GoogleScholarGoogle Scholar |
Jonassen DH (2000) ‘Computers as mindtools in schools: engaging critical thinking.’ (Prentice-Hall: Columbus, OH)
Kockman F, Granger S, Lemasson C, Simoens C, Duru M (2009) Gestion du pâturage au printemps en système bovin allaitant: diversité des pratiques en Saône et Loire. Fourrages 198, 211–226.
Kolb DA (1984) ‘Experiential learning: experience as the source of learning and development.’ (Prentice-Hall, Inc.: Englewood Cliffs, NJ)
Leeuwis C (2004) ‘Communication for rural innovation: rethinking agricultural extension.’ (Blackwell Publishing Ltd: Oxford, UK)
March JG (2006) Rationality, foolishness, and adaptive intelligence. Strategic Management Journal 27, 201–214.
| Rationality, foolishness, and adaptive intelligence.Crossref | GoogleScholarGoogle Scholar |
Martin G, Martin-Clouaire R, Rellier JP, Duru M (2011) A simulation framework for the design of grassland-based beef-cattle production systems. Environmental Modelling & Software 26, 371–385.
| A simulation framework for the design of grassland-based beef-cattle production systems.Crossref | GoogleScholarGoogle Scholar |
Martin-Clouaire R, Rellier JP (2009) Modelling and simulating work practices in agriculture. International Journal of Metadata, Semantics and Ontologies 4, 42–53.
| Modelling and simulating work practices in agriculture.Crossref | GoogleScholarGoogle Scholar |
Matthews RB (2002) Crop-soil simulation models: applications. In ‘Developing countries introduction’. (Eds RB Matthews, W Stephens) pp. 1–5. (CABI: Wallingford, UK)
McCown R, Carberry P, Hochman Z, Dalgliesh N, Foale M (2009) Re-inventing model-based decision support with Australian dryland farmers. 1. Changing intervention concepts during 17 years of action research. Crop & Pasture Science 60, 1017–1030.
| Re-inventing model-based decision support with Australian dryland farmers. 1. Changing intervention concepts during 17 years of action research.Crossref | GoogleScholarGoogle Scholar |
Norman DA (1983) Some observations on mental models. In ‘Mental models’. (Eds D Gentner, AL Stevens) pp. 7–14. (Lawrence Erlbaum Associates: Hillsdale, NJ)
O’Donovan M, Dillon P (1999) Measurement of grassland management practise on commercial dairy farms. Teagasc end of project report 4351. Available at: www.teagasc.ie/research/reports/dairyproduction/4351/eopr-4351.pdf
Parsons AJ (1988) The effect of season and management on the grass growth of grass sward. In ‘The grass crop’. (Eds MB Jones, A Lazenby) pp. 129–177. (Chapman and Hall: London)
Peel S, Matkin EA, Huckle CA (1988) Herbage growth and utilized output from grassland on dairy farms in southwest England: case studies of five farms, 1982 and 1983. II. Herbage utilization. Grass and Forage Science 43, 71–78.
| Herbage growth and utilized output from grassland on dairy farms in southwest England: case studies of five farms, 1982 and 1983. II. Herbage utilization.Crossref | GoogleScholarGoogle Scholar |
Peyraud JL, Delaby L (2005) Combiner la gestion optimale du pâturage et les performances des vaches laitières: enjeux et outils. Productions Animales 18, 231–240.
Reeves TC (1999) A research agenda for interactive learning in the New Millennium. In ‘Ed-Media ‘99 Keynote. Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications’. Chesapeake, VA. (Eds B Collis, R Oliver) pp. 15–20. (Association for the Advancement of Computers in Education: Charlottesville, VA). Available at: www.coe.uga.edu/~treeves/EM99Key.html
Romera AJ, Beukes P, Clak C, Lew H, Tait A (2010) Use of a pasture growth model to estimate herbage mass at a paddock scale and assist management on dairy farms. Computers and Electronics in Agriculture 74, 66–72.
| Use of a pasture growth model to estimate herbage mass at a paddock scale and assist management on dairy farms.Crossref | GoogleScholarGoogle Scholar |
Seuret JM, Lecoeur P, Dequin A, Guillois F, Roger P (2004) Tool to describe the feed for grazing dairy cows according to area of grazing per cow and climate. Rencontre Recherche Ruminants, 304.
Sheath GW, Clark DA (1996) Management of grazing systems temperate pastures. In ‘The ecology and management of grazing systems’. (Eds J Hodgson, AW Illius) pp. 301–324. (CAB International: Wallingford, UK)
Stakelum G (1996) Practical grazing management for dairy cows. Irish Grassland and Production Association Journal 30, 33–45.
Stone P, Hochman Z (2004) If interactive decision support systems are the answer, have we been asking the right questions? In ‘New directions for a diverse planet. Proceedings of the 4th International Crop Science Congress’. Brisbane, Australia. (Eds T Fischer, N Turner, J Angus, L McIntyre, M Robertson, A Borrell, D Lloyd) (The Regional Institute Ltd: Gosford, NSW). Available at: http://cropscience.org.au/icsc2004/images/srcpdf.gif
van Mierlo B, Arkesteijn M, Leeuwis C (2010) Enhancing the reflexivity of system innovation projects with system analyses. American Journal of Evaluation 31, 143–161.
| Enhancing the reflexivity of system innovation projects with system analyses.Crossref | GoogleScholarGoogle Scholar |
Vinck D (1999) Les objets intermédiaires dans les réseaux de coopération scientifique. Contribution à la prise en compte des objets dans les dynamiques sociales. Revue Francaise de Sociologie 40, 385–414.
| Les objets intermédiaires dans les réseaux de coopération scientifique. Contribution à la prise en compte des objets dans les dynamiques sociales.Crossref | GoogleScholarGoogle Scholar |