Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Genetic diversity in khorasan and rivet wheat by assessment of morphological traits and seed storage proteins

S. Carmona A , L. Caballero B , L. M. Martín A and J. B. Alvarez A C
+ Author Affiliations
- Author Affiliations

A Departamento de Genética, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, ES-14071 Córdoba, Spain.

B Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Apdo. 4084, ES-14080 Córdoba, Spain.

C Corresponding author. Email: jb.alvarez@uco.es

Crop and Pasture Science 61(11) 938-944 https://doi.org/10.1071/CP10228
Submitted: 30 June 2010  Accepted: 21 September 2010   Published: 4 November 2010

Abstract

The genetic diversity of 77 accessions of khorasan wheat (Triticum turgidum subsp. turanicum Jakubz em. A. Löve & D. Löve) and 313 accessions of rivet wheat (T. turgidum L. subsp. turgidum) was assessed on the basis of analysis of several morphological traits and seed storage proteins. Eleven allelic variants were detected in khorasan wheat, three for the Glu-A1, one of them identified as novel; while two of the eight alleles detected for the Glu-B1 have not previously been described. A higher level of variability was observed in rivet wheat, with the detection of 20 allelic variants, five alleles at the Glu-A1 loci, two of them new, and 15 allelic variants at the Glu-B1 loci, six of these being novel. The khorasan wheat accessions derived from 22 different origins, while there were 39 origins for the rivet wheat accessions. Genetic diversity was lower among the khorasan (Ht = 0.395) than among the rivet wheat accessions (Ht = 0.545). Nevertheless, in both species, most of this diversity appeared between origins, with very low diversity observed within origins. The detected variation could be used for transfer new quality genes to durum wheat, thus enlarging the genetic pool of this species.

Additional keywords: electrophoresis, genetic diversity, glutenin, morphological traits.


References

Aguiriano E, Ruiz M, Fité R, Carrillo JM (2008) Genetic variation for glutenin and gliadins associated with quality in durum wheat (Triticum turgidum L. ssp. turgidum) landraces from Spain. Spanish Journal of Agricultural Research 6, 599–609.

Alvarez JB, Caballero L, Ureña P, Vacas M, Martín LM (2007) Characterisation and variation of morphological traits and storage proteins in Spanish emmer wheat germplasm (Triticum dicoccon). Genetic Resources and Crop Evolution 54, 241–248.
Characterisation and variation of morphological traits and storage proteins in Spanish emmer wheat germplasm (Triticum dicoccon).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVKrtr4%3D&md5=bad32e45a7bebb6667ae862744c98481CAS |

Alvarez JB, Martín A, Martín LM (2001) Variation in the high molecular weight glutenin subunits coded at the Glu-Hch1 locus in Hordeum chilense. Theoretical and Applied Genetics 102, 134–137.
Variation in the high molecular weight glutenin subunits coded at the Glu-Hch1 locus in Hordeum chilense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlKmtrw%3D&md5=5c59a097010ec444e0cfae215132ddffCAS |

Alvarez JB, Moral A, Martín LM (2006) Polymorphism and genetic diversity for the seed storage proteins in Spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum). Genetic Resources and Crop Evolution 53, 1061–1067.
Polymorphism and genetic diversity for the seed storage proteins in Spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlSnsrY%3D&md5=d3ead54f80981f1e7f58006746ff2512CAS |

Branlard G, Autran JC, Monneveux P (1989) High molecular weight glutenin subunit in durum wheat (T. durum). Theoretical and Applied Genetics 78, 353–358.
High molecular weight glutenin subunit in durum wheat (T. durum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkslOk&md5=2a6374599d6fed9c6945d5f72f76285aCAS |

Brown AHD, Frankel OH, Marshall DR, Williams JT (1989) ‘The use of plant genetic resources.’ (Cambridge University Press: Cambridge, UK)

Caballero L, Martín LM, Alvarez JB (2001) Allelic variation of the HMW glutenin subunits in Spanish accessions of spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.). Theoretical and Applied Genetics 103, 124–128.
Allelic variation of the HMW glutenin subunits in Spanish accessions of spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsV2msbs%3D&md5=9872ee3995567347d5aaa41fb0e3b4bcCAS |

Caballero L, Martín LM, Alvarez JB (2004) Genetic variability for the low molecular weight glutenin subunits in spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.). Theoretical and Applied Genetics 108, 914–919.
Genetic variability for the low molecular weight glutenin subunits in spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlalsLk%3D&md5=93df627c3f4ae8331257dd4542223712CAS | 14614566PubMed |

Caballero L, Martín LM, Alvarez JB (2008) Variation of high molecular weight glutenin subunits in two neglected tetraploid wheat subspecies. Czech Journal of Genetics and Plant Breeding 44, 140–146.

Carmona S, Alvarez JB, Caballero L (2010) Genetic diversity for morphological traits and seed storage proteins in Spanish rivet wheat. Biologia Plantarum 54, 69–75.
Genetic diversity for morphological traits and seed storage proteins in Spanish rivet wheat.Crossref | GoogleScholarGoogle Scholar |

Dokuyucu T, Akkaya A, Akçura M, Kara R, Budak H (2004) Collection, identification and conservation of wheat landraces in Kahramanmaras province in East Mediterranean region of Turkey. Cereal Research Communications 32, 167–174.

Esquinas-Alcázar J (2005) Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nature Genetics Review 6, 946–953.
Protecting crop genetic diversity for food security: political, ethical and technical challenges.Crossref | GoogleScholarGoogle Scholar |

Eticha F, Belay G, Bekele E (2006) Species diversity in wheat landrace populations from two regions of Ethiopia. Genetic Resources and Crop Evolution 53, 387–393.
Species diversity in wheat landrace populations from two regions of Ethiopia.Crossref | GoogleScholarGoogle Scholar |

Gökgöl M (1961) Die iranischen Weizen. Zeitschrift für Pflanzenzüchtung 45, 315–333.

Grausgruber H, Oberforster M, Ghambashidze G, Ruckenbauer P (2005) Yield and agronomic traits of Khorasan wheat (Triticum turanicum Jakubz.). Field Crops Research 91, 319–327.
Yield and agronomic traits of Khorasan wheat (Triticum turanicum Jakubz.).Crossref | GoogleScholarGoogle Scholar |

Hailu F, Merker A, Singh H, Belay G, Johansson E (2006) Multivariate analysis of diversity of tetraploid wheat germplasm from Ethiopia. Genetic Resources and Crop Evolution 53, 1089–1098.
Multivariate analysis of diversity of tetraploid wheat germplasm from Ethiopia.Crossref | GoogleScholarGoogle Scholar |

Hammer K (2000) Biodiversity of the genus Triticum. In ‘Organic plant breeding and biodiversity of cultural plants’. (Eds C Wiethaler, R Oppermann, E Wyss) pp. 72–81. (NABU/FiBL: Bonn, Germany/Frick, Switzerland)

Jauhar PP (1993) Alien gene transfer and genetic enrichment of bread wheat. In ‘Biodiversity and wheat-improvement’. (Ed. AB Damania) pp. 103–119. (ICARDA-A Wiley Sayce Publications: Aleppo, Syria)

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFags7s%3D&md5=3232cd55813d7f029f22349cf302316cCAS | 5432063PubMed |

Marshall DR, Brown AHD (1975) Optimum sampling strategies in genetic conservation. In ‘Crop genetic resources for today and tomorrow’. (Eds OH Frankel, JG Hawkes) pp. 53–70. (Cambridge University Press: Cambridge, UK)

Moragues M, Zarco-Hernández J, Moraleja A, Royo C (2006) Genetic diversity of glutenin protein subunits composition in durum wheat landraces (Triticum turgidum ssp. turgidum convar. durum (Desf.) Mackey) from the Mediterranean basin. Genetic Resources and Crop Evolution 53, 993–1002.
Genetic diversity of glutenin protein subunits composition in durum wheat landraces (Triticum turgidum ssp. turgidum convar. durum (Desf.) Mackey) from the Mediterranean basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlSnsr4%3D&md5=e54e43232a5c026f264655cb768a961cCAS |

Nei M (1972) Genetic distances between different populations. American Naturalist 106, 283–292.
Genetic distances between different populations.Crossref | GoogleScholarGoogle Scholar |

Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70, 3321–3323.
Analysis of gene diversity in subdivided populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c%2FlsFCrtQ%3D%3D&md5=bf04ad371e61af09140b7a46cadf3aedCAS | 4519626PubMed |

Nieto-Taladriz MT, Ruiz M, Martinez MC, Vazquez JF, Carrillo JM (1997) Variation and classification of B low-molecular-weight glutenin subunit alleles in durum wheat. Theoretical and Applied Genetics 95, 1155–1160.
Variation and classification of B low-molecular-weight glutenin subunit alleles in durum wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFajsA%3D%3D&md5=ea3f4ec25bce7a400e038a94102afbffCAS |

Payne PI (1987) Genetics of wheat storage proteins and the effects of allelic variation on bread-making quality. Annual Review of Plant Physiology 38, 141–153.
Genetics of wheat storage proteins and the effects of allelic variation on bread-making quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkslCiu78%3D&md5=6ca968269fca1027bd2c44af2d321ef0CAS |

Percival J (1934) ‘Wheat in Great Britain.’ (Gerald Duckworth & Co Ltd.: London)

Pflüger LA, Martín LM, Alvarez JB (2001) Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum turgidum ssp. dicoccum Schrak). Theoretical and Applied Genetics 102, 767–772.
Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum turgidum ssp. dicoccum Schrak).Crossref | GoogleScholarGoogle Scholar |

Pogna NE, Autran JC, Mellini F, Lafiandra D, Feillet P (1990) Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength. Journal of Cereal Science 11, 15–34.
Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhtlKis78%3D&md5=1439d563638a6b7381b71c671f54c43bCAS |

Singh NK, Shepherd KW (1988) Linkage mapping of genes controlling endosperm storage proteins in wheat. I. Genes on the short arms of group 1 chromosomes. Theoretical and Applied Genetics 75, 628–641.
Linkage mapping of genes controlling endosperm storage proteins in wheat. I. Genes on the short arms of group 1 chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkt1SgtL4%3D&md5=cbc3e4e8ae2c7e221d202edc72189079CAS |

Tarekegne A, Labuschangne MT (2005) Relationship between high molecular weight glutenin subunit composition and gluten quality in Ethiopian-grown bread and durum wheat cultivars and lines. Journal of Agronomy & Crop Science 191, 300–307.
Relationship between high molecular weight glutenin subunit composition and gluten quality in Ethiopian-grown bread and durum wheat cultivars and lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSlt7nF&md5=1634f81ba6d3986d458175274e397f38CAS |

UPOV (1994) ‘Draft guidelines for the conduct of test for distinctness, homogeneity and stability (wheat).’ TG/3/11 (proj). (International Union for the Protection of New Varieties of Plants: Geneva, Switzerland)

Vallega V (1988) Comparative analysis of high-molecular-weight glutenin subunit composition in various Triticum species. Plant Breeding 100, 241–246.
Comparative analysis of high-molecular-weight glutenin subunit composition in various Triticum species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXls1OnsLc%3D&md5=b1ee0fedbfb73e3cf5724a282565c2abCAS |

Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica 13, 1–364.

Xu LL, Li W, Wei YM, Zheng YL (2009) Genetic diversity of HMW glutenin subunits in diploid, tetraploid and hexaploid Triticum species. Genetic Resources and Crop Evolution 56, 377–391.
Genetic diversity of HMW glutenin subunits in diploid, tetraploid and hexaploid Triticum species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFejtb4%3D&md5=4174ea4aa3e1fa043f66014bed92e25bCAS |

Xu LL, Li W, Zheng YL (2006) Analysis on main agronomic characters in Triticum turanicum Jakubz. Journal of Triticeae Crops 2006,

Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) ‘Popgene version 1.32. The user-friendly software for population genetic analysis.’ (Molecular Biology and Biotechnology Center, University of Alberta: Alberta, Canada)

Zeven AC (1990) Classification of landraces and improved cultivars of rivet wheat (Triticum turgidum) and bread wheat (T. aestivum) from Great Britain and described in 1934. Euphytica 47, 249–258.