Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Assessment of genetic diversity in Australian canola (Brassica napus L.) cultivars using SSR markers

J. Wang A , S. Kaur B , N. O. I. Cogan B , M. P. Dobrowolski A , P. A. Salisbury B D , W. A. Burton B , R. Baillie B , M. Hand B , C. Hopkins B , J. W. Forster B C , K. F. Smith B C and G. Spangenberg B C E
+ Author Affiliations
- Author Affiliations

A Department of Primary Industries, Biosciences Research Division, Hamilton Centre, Mount Napier Road, Hamilton, Vic. 3300, Australia.

B Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, La Trobe University Research and Development Park, Bundoora, Vic. 3083, Australia.

C Department of Life Sciences, La Trobe University, Bundoora, Vic. 3083, Australia.

D Melbourne School of Land and Environment, The University of Melbourne, Parkville, Vic. 3010, Australia.

E Corresponding author. Email: german.spangenberg@dpi.vic.gov.au

Crop and Pasture Science 60(12) 1193-1201 https://doi.org/10.1071/CP09165
Submitted: 9 June 2009  Accepted: 25 August 2009   Published: 23 November 2009

Abstract

Australian canola (Brassica napus L.) has been relatively isolated from the global gene pool and limited knowledge is available for genetic variability based on DNA profiling. In the present study, genetic diversity of recent Australian canola cultivars was determined by simple sequence repeat (SSR) marker analysis. In total, 405 individuals from 48 varieties were genotyped with 18 primer pairs, resulting in 112 polymorphic features. The number of polymorphic features amplified by each SSR primer pair varied from 3 to 16. Analysis of molecular variance (AMOVA) detected 53.7% and 46.3% within- and between-cultivar variation, respectively. Intra-cultivar genetic variability differed according to cultivar. The number of polymorphic features per cultivar varied from 35 (Ag-Spectrum) to 72 (Ag-Insignia), while mean sum of squares (MSS) varied from 6.29 (Tornado TT) to 24.76 (Ag-Emblem). Genetic differentiation of cultivars generally reflected pedigree structure and origin by breeding organisation. Clustering and principal coordinate analysis (PCoA) indicated that the individuals were separated into 4 major groups. The genetic diversity information from this study will be useful for future Australian canola breeding programs.

Additional keywords: AMOVA, cluster, PCA, rapeseed.


Acknowledgments

The authors thank the following DPI staff for their input during data collection and analysis: K. Lawless, E. vanZijl de Jong, A. Keniry, and H. Mountford.


References


Becker HC, Engqvist GM, Karlsson B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theoretical and Applied Genetics 91, 62–67.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Burton WA, Ripley VL, Potts DA, Salisbury PA (2004) Assessment of genetic diversity in selected breeding lines and cultivars of canola quality Brassica juncea and their implications for canola breeding. Euphytica 136, 181–192.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Chen S, Nelson MN, Ghamkhar K, Fu T, Cowling WA (2008) Divergent patterns of allelic diversity from similar origins: the case of oilseed rape (Brassica napus L.) in China and Australia. Genome 51, 1–10.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cowling WA (2007) Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crops Research 104, 103–111.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26, 297–302.
Crossref | GoogleScholarGoogle Scholar | open url image1

Diers BW, Osborn TC (1994) Genetic diversity of oilseed Brassica napus germplasm based on restriction fragment length polymorphisms. Theoretical and Applied Genetics 88, 662–668.
Crossref | GoogleScholarGoogle Scholar | open url image1

Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131, 479–491.
CAS | PubMed |
open url image1

Hasan M, Seyis F, Badani A, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon R (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genetic Resources and Crop Evolution 53, 793–802.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss Buchloe dactyloides (Nutt.) Engelm. Theoretical and Applied Genetics 86, 927–934.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kaur S, Cogan NOI, Ye G, Baillie RC, Hand ML, Ling AE, Mcgearey AK, Kaur J, Hopkins CJ, Todorovic M, Mountford H, Edwards D, Batley J, Burton W, Salisbury P, Gororo N, Marcroft S, Kearney G, Smith KF, Forster JW, Spangenberg GC (2009) Genetic map construction and QTL mapping of resistance to blackleg (Leptospheria maculans) disease in Australian canola (Brassica napus L.) cultivars. Theoretical and Applied Genetics (available online). ,
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lombard V, Baril CP, Dubreuil P, Blouet F, Zhang D (2000) Genetic relationships and fingerprinting of rapeseed cultivars by AFLP: consequences for varietal registration. Crop Science 40, 1417–1425.
CAS |
open url image1

Lowe A, Moule C, Trick M, Edwards K (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theoretical and Applied Genetics 108, 1103–1112.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mailer RJ, Wratten N, Vonarx M (1997) Genetic diversity amongst Australian canola cultivars determined by randomly amplified polymorphic DNA. Australian Journal of Experimental Agriculture 37, 793–800.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
Crossref | GoogleScholarGoogle Scholar | open url image1

Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M-J, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theoretical and Applied Genetics 111, 1514–1523.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Plieske J, Struss D (2001) Microsatellite markers for genome analysis in Brassica. I. Development in Brassica napus and abundance in Brassicaceae species. Theoretical and Applied Genetics 102, 689–694.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Rohlf FJ (2002) ‘NTSYS-PC: Numerical taxonomy and multivariate analysis system, Ver. 2.10z.’ (Exeter Software: Setauket, NY)

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
CAS | PubMed |
open url image1

Salisbury P , Wratten N (1999) Brassica napus breeding. In ‘Canola in Australia: The First 30 Years. 10th International Rapeseed Congress’. (Eds P Salisbury, T Potter, G McDonald, A Green) pp. 29–35. (Organising Committee of the 10th International Rapeseed Congress: Canberra, ACT)

Salisbury PA, Ballinger DJ, Wratten N, Plummer KM, Howlett BJ (1995) Blackleg disease on oilseed Brassica in Australia: a review. Australian Journal of Experimental Agriculture 35, 665–672.
Crossref | GoogleScholarGoogle Scholar | open url image1

Seyis F, Snowdon R, Luhs W, Friedt W (2003) Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breeding 122, 473–478.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Tommasini L, Batley J, Arnold GM, Cooke RJ, Donini P, Lee D, Law JR, Lowe C, Moule C, Trick M, Edwards KJ (2003) The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theoretical and Applied Genetics 106, 1091–1101.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1