Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

An informative set of SNP markers for molecular characterisation of Australian barley germplasm

M. J. Hayden A B E , T. L. Tabone A C , T. M. Nguyen A , S. Coventry A , F. J. Keiper D , R. L. Fox A , K. J. Chalmers A , D. E. Mather A and J. K. Eglinton A
+ Author Affiliations
- Author Affiliations

A Molecular Plant Breeding CRC and School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.

B Current address: Primary Industries Research Victoria, Victorian AgriBioscience Center, La Trobe Research and Development Park, Bundoora, Vic. 3082, Australia.

C Current address: Ludwig Institute for Cancer Research, PO Box 2008, Royal Melbourne Hospital, Parkville, Vic. 3050, Australia.

D South Australian Research and Development Institute, GPO Box 397, Adelaide, SA 5001, Australia.

E Corresponding author. Email: matthew.hayden@dpi.vic.gov.au

Crop and Pasture Science 61(1) 70-83 https://doi.org/10.1071/CP09140
Submitted: 10 May 2009  Accepted: 31 August 2009   Published: 17 December 2009

Abstract

The identification of genetic variation using molecular markers is fundamental to modern plant breeding and research. The present study was undertaken to develop a resource of informative single nucleotide polymorphism (SNP) markers for molecular characterisation of Australian barley germplasm. In total, 190 SNP markers were developed and characterised using 88 elite barley lines and varieties, sampling genetic diversity relevant to Australian breeding programs, and a core set of 48 SNPs for distinguishing among the barley lines was identified. The utility of the core 48-SNP set for distinguishing barley lines and varieties using DNA extracted from grain samples was also assessed. Finally, the 48 SNPs in the core set were converted into simple PCR markers to enable co-dominant SNP genotyping on agarose gel. The SNP markers developed, and in particular the core 48-SNP set, provide a useful marker resource for assessing genetic relationships between individuals and populations of current Australian barley germplasm. They are also useful for identity and purity testing of inbred lines in research, breeding, and commercial applications.

Additional keywords: SNPs, genotyping, genetic diversity.


Acknowledgments

This research was supported by the Molecular Plant Breeding CRC and Grains Research and Development Corporation, Australia.


References


Abbott DC, Brown AHD, Burdon JJ (1992) Genes for scald resistance from wild barley (Hordeum vulgare ssp. spontaneum) and their linkage to isozyme markers. Euphytica 61, 225–231.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Akkaya MS, Buyukunal-Bal EB (2004) Assessment of genetic variation of bread wheat varieties using microsatellite markers. Euphytica 135, 179–185.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Anderson JA, Churchill GA, Autrique EJ, Tanksley SD, Sorrells ME (1993) Optimising parental selection for genetic linkage maps. Genome 36, 181–186.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Baek HJ, Beharav A, Nevo E (2003) Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theoretical and Applied Genetics 106, 397–410.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Bansal UK, Hayden MJ, Gill MB, Bariana HS (2009) Chromosomal location of an uncharacterised strip rust resistance gene in wheat. Euphytica (in press) ,
Crossref | GoogleScholarGoogle Scholar | open url image1

Bovo D, Rugge M, Shiao YH (1999) Origin of spurious multiple bands in the amplification of microsatellite sequences. Molecular Pathology 52, 50–51.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Chen J, Iannone MA, Li M-S, Taylor D, Rivers P, Nelsen AJ, Slentz-Kesler KA, Roses A, Weiner MP (2000) A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Research 10, 549–557.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Cooke RJ, Bredemeijer GMM, Ganal MW, Peeters R, Isaac P, Rendell S, Jackson J, Röder MS, Korzun V, Wendehake K, Areshchenkova T, Dijcks M, Laborie D, Bertrand L, Vosman B (2003) Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci. Euphytica 132, 331–341.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Dunbar SA (2006) Applications of Luminex® xMAP™ technology for rapid, high-throughput multiplexed nucleic acid detection. Clinica Chimica Acta 363, 71–82.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Fernando P, Evans BJ, Morales JC, Melnick DJ (2001) Electrophoresis artifacts – a previously unrecognized cause of error in microsatellite analysis. Molecular Ecology Notes 1, 325–328.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Gonzalez-Martinez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2005) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172, 1915–1926.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hayden MJ, Kuchel H, Chalmers KJ (2004) Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 109, 1641–1647.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hayden MJ, Nguyen TM, Waterman A, Chalmers KJ (2008a) Multiplex-Ready PCR: A new method for multiplexed SSR and SNP genotyping. BMC Genomics 9, 80.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2008b) Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Molecular Breeding 21, 271–281.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Hayden MJ, Tabone T, Mather DE (2009) Development and assessment of simple PCR markers for SNP genotyping in barley. Theoretical and Applied Genetics 119, 939–951.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hayes P, Szucs P (2006) Disequilibrium and association in barley: Thinking outside the glass. Proceedings of the National Academy of Sciences of the United States of America 103, 18385–18386.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theoretical and Applied Genetics 115, 383–391.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theoretical and Applied Genetics 33, 54–78. open url image1

Jefferies SP, Barr AR, Karakousis A, Kretschmer JM, Manning S, Chalmers KJ, Nelson JC, Islam AKMR, Langridge P (1999) Mapping of chromosome regions conferring boron toxicity tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 98, 1293–1303.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F , et al . (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Molecular Breeding 3, 381–390.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kaneko T, Kihara T, Ito K (2000) Genetic analysis of β-amylase thermostability to develop a DNA marker for malt fermentability improvement in barley, Hordeum vulgare. Plant Breeding 119, 197–201.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific markers. The Plant Journal 4, 403–410.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kota R, Varshney RK, Prasad M, Zhang H, Stein N, Graner A (2008) EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. Functional & Integrative Genomics 8, 223–233.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lia VV, Bracco M, Gottlieb AM, Poggio L, Confalonieri VA (2007) Complex mutational patterns and size homoplasy at maize microsatellite loci. Theoretical and Applied Genetics 115, 981–991.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Malysheva-Otto LV, Roder MS (2006) Haplotype diversity in the endosperm specific β-amylase gene Bmy1 of cultivated barley (Hordeum vulgare L.). Molecular Breeding 18, 143–156.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209–220.
CAS | PubMed |
open url image1

Matus IA, Hayes PM (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45, 1095–1106.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Rafalski JA (2002) Application of single nucleotide polymorphisms in crop genetics. Current Opinion in Plant Biology 5, 94–100.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Rogowsky PM, Guidet FLY, Langridge P, Shepherd KW, Koebner RMD (1991) Isolation and characterization of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theoretical and Applied Genetics 82, 537–544.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L , et al . (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Molecular Genetics and Genomics 274, 515–527.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Russell J, Booth A, Fuller J, Harrower B, Hedley P, Machray G, Powell W (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of barley. Genome 47, 389–398.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W, Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theoretical and Applied Genetics 95, 714–722.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Tabone TL, Mather DE, Hayden MJ (2009) Temperature Switch PCR (TSP): Robust assay design for reliable amplification and genotyping of SNPs. BMC Genomics 10, 580.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Terzi V, Morcia C, Gorrini A, Stanca M, Shewry PR, Faccioli P (2005) DNA-based methods for identification and quantification of small grain cereal mixtures and fingerprinting of varieties. Journal of Cereal Science 41, 213–220.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Varshney RK, Marcel TC, Ramsay L, Russell J, Roder MS, Stein N, Waugh R, Langridge P, Niks RE, Granar A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics 114, 1091–1103.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Varshney RK, Thiel T, Sretenovic-Rajicic T, Baum M, Valkoun J, Guo P, Grando S, Ceccarelli S, Graner A (2008) Identification and validation of a core set of informative genic SSR and SNP markers for assaying functional diversity in barley. Molecular Breeding 22, 1–13.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

von Korff M, Wang H, Leon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favorable exotic alleles for agronomic traits introgressed from wild barley (H.vulgare spp. spontaneum). Theoretical and Applied Genetics 112, 1221–1231.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

von Zitzewitz J, Szucs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, Casas A, Chen THH, Hayes PM, Skinner JS (2005) Molecular and structural characterization of barley vernalization genes. Plant Molecular Biology 59, 449–467.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wang J, Dobrowolski MP, Cogan NOI, Forster JW, Smith KF (2009) Assignment of individual genotypes to specific forage cultivars of perennial ryegrass based on SSR markers. Crop Science 49, 49–58.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Yoon MS, Song QJ, Choi LY, Specht JE, Hyten DL, Cregan PB (2007) BARCSoySNP23: a panel of 23 selected SNPs for soybean cultivar identification. Theoretical and Applied Genetics 114, 885–899.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1