Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Genetic diversity analysis among pre-green revolution, post-green revolution era cultivars, and wheat landraces as revealed by microsatellite markers

Neelu Jain A B and Rajbir Yadav A
+ Author Affiliations
- Author Affiliations

A Division of Genetics, Indian Agricultural Research Institute, New Delhi – 110012, India.

B Corresponding author. Email: neelu_jain25@yahoo.com

Crop and Pasture Science 60(4) 373-381 https://doi.org/10.1071/CP08310
Submitted: 15 September 2008  Accepted: 4 February 2009   Published: 21 April 2009

Abstract

Bread wheat (Triticum aestivum L.) is the most widely grown crop in the world, and India is the second largest wheat producer after China. Introduction of input-responsive, semi-dwarf varieties set the foundation for the green revolution in the mid-1960s. To meet the future challenge of increasing food production with a shrinking land base, new varieties with higher yield potential and increased yield stability have to be developed by using the diverse genetic resource. The objective of this study was to evaluate genetic diversity in 74 wheat genotypes including released varieties in India occupying the pre-green revolution period (before 1965) and post-green revolution period (after 1965) and land races with microsatellite markers. SSRs represent a powerful tool to quantify genetic diversity in wheat. In total, 170 alleles were detected with an average of 3.3 alleles per locus. Overall, 24 rare alleles were present and 11 unique alleles were found in the studied landraces only. A positive correlation was found between the number of alleles and genetic diversity. Genetic relationships as determined by UPGMA (NTSYS-pc) and structure analyses grouped all modern wheat cultivars under one node. The traditional tall varieties released during the pre-green revolution era were clustered along with some of the landraces, indicating that they had possibly been developed through selection among the landraces. Diversity among the released varieties in the post-green revolution era has widened rather than narrowing down. Molecular variance analysis showed that variance was mainly distributed within (91.9%) rather than among (8.01%) the bread wheat varieties and landraces. The diversity obtained within the landraces proves them to be an important reservoir of biodiversity and source of novel alleles for use in breeding programs. Landraces such as MPG 62 and MPG 82 can be used for introgressing rare and unique alleles in the genetic background of high-yielding varieties.

Additional keywords: SSR, microsatellites, molecular markers.


Acknowledgments

Thanks are due to Dr B. K. Mishra and Dr Rajiv K. Shrama (Division of Genetics, IARI) for providing the necessary research material and their kind support.


References


Al Khanjari S, Hammer K, Buerkert A, Röder MS (2007) Molecular diversity of Omani wheat revealed by microsatellites: I. Tetraploid landraces. Genetic Resources and Crop Evolution 54, 1291–1300.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cao W, Scoles G, Hucl P, Chibbar RN (2000) Phylogenetic relationships of five morphological groups of hexaploid wheat (Triticum aestivum L. em. Thell.) based on RAPD analysis. Genome 43, 724–727.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Chao S, Zhang W, Dubcovsky J, Sorrels M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Science 47, 1018–1030.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Chatrath R, Mishra B, Ortiz Ferrara G, Singh SK, Joshi AK (2007) Challenges to wheat production in South Asia. Euphytica 157, 447–456.
Crossref | GoogleScholarGoogle Scholar | open url image1

Christiansen MJ, Andersen SB, Ortiz R (2002) Diversity changes in an intensively bred wheat germplasm during the 20th century. Molecular Breeding 9, 1–11.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dreisigacker S, Zhang P, Warburton ML, Skovmand B, Hoisington D, Melchinger AE (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Science 45, 653–661.
CAS |
open url image1

Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
CAS | PubMed |
open url image1

Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theoretical and Applied Genetics 100, 1025–1042.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ghosh S, Karanjawala ZE, Hauser ER, Ally D, Knapp JI, Rayman JB, Musick A, Tannenbaum J, Te C, Shapiro S, Eldridge W, Musick T, Martin C, Smith JR, Carpten JD, Brownstein MJ, Powell JI, Whiten R, Chines P, Nylund SJ, Magnuson VL, Boehnke M, Collins FS (1997) Methods for precise sizing, automated binning of alleles, and reduction of error rates in large-scale genotyping using fluorescently labeled dinucleotide markers. Genome Research 7, 165–178.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Guadagnuolo R, Savova BD, Felber F (2001) Specific genetic markers for wheat, spelt, and four wild relatives: comparison of isozymes, RAPDs, and wheat microsatellites. Genome 44, 610–621.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Gupta P, Balyan HS, Edwards KJ, Isaac P, Korzun V, Röder M, Gautier M-F, Joudrier P, Schlatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theoretical and Applied Genetics 105, 413–422.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hao C, Wang L, Zhang X, You G, Dong Y, Jia J, Liu X, Shang X, Liu X, Cao Y (2006) Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers. Science in China. Series C, Life Sciences 49(3), 218–226.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Huang XQ, Börner A, Röder S, Ganal W (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theoretical and Applied Genetics 105, 699–707.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Huang XQ, Coster H, Ganal MW, Roder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theoretical and Applied Genetics 106, 1379–1389.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Jain KBL , Byerlee D (1999) Investment efficiency at the national level: wheat improvement research in India. In ‘The Global Wheat Improvement System: prospects for enhancing efficiency in the presence of spillovers’. CIMMYT Research Report No. 5. (Eds MK Maredia, D Byerlee) (CIMMYT: Mexico, D.F.)

Kim HS, Ward RW (1997) Genetic diversity in Eastern U.S. soft winter wheat (Triticum aestivum L. em. Thell.) based on RFLPs and coefficient of parentage. Theoretical and Applied Genetics 94, 472–479.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lantican MA , Dubin HJ , Morris ML (2005) ‘Impacts of international wheat breeding research in the developing world, 1988–2002.’ (CIMMYT: Mexico, D.F.)

Lee SJ, Penner G, Devos K (1995) Characterization of loci containing microsatellite sequences among Canadian wheat cultivars. Genome 38, 1037–1040.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Manifesto MM, Schlatter AR, Hopp HE, Suárez EY, Dubcovsky J (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Science 41, 682–690.
CAS |
open url image1

Nagarajan S (2005) Can India produce enough wheat even by 2020. Current Science 89, 1467–1471. open url image1

Patto MC, Vaz , Satovic Z, Pêgo S, Fevereiro P (2004) Assessing the genetic diversity of Portuguese maize germplasm using microsatellite markers. Euphytica 137, 63–72.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43, 689–697.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 107, 340–352.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theoretical and Applied Genetics 100, 594–595. open url image1

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure from multilocus genotype data. Genetics 155, 945–959.
CAS | PubMed |
open url image1

Reif JC, Zhang P, Dreisigacker S, Warburton ML, Ginkel MV, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theoretical and Applied Genetics 110, 859–864.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ribeiro-Carvalho C, Guedes-Pinto H, Igrejas G, Stephenson P, Schwarzacher T, Heslop-Harrison JS (2004) High levels of genetic diversity throughout the range of the Portuguese wheat landrace ‘Barbela’. Annals of Botany 94, 699–705.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Röder MS , Huang XQ , Ganal MW (2004) Wheat microsatellites in plant breeding—potential and implications. In ‘Molecular markers in plant breeding’. (Eds H Loerz, G Wenzel) pp. 255–266. (Springer-Verlag: Heidelberg, Germany)

Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149, 2007–2023.
PubMed |
open url image1

Rohlf FJ (1993) ‘NTSYS-PC: Numerical taxonomy and multivariate analysis system. Version 1.8.’ (Exeter Software: New York)

Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theoretical and Applied Genetics 108, 920–930.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Routray P, Basha O, Garg M, Singh NK, Dhaliwal HS (2007) Genetic diversity of landraces of wheat (Triticum aestivum L.) from hilly areas of Uttaranchal, India. Genetic Resources and Crop Evolution 54(6), 1315–1326.
Crossref | GoogleScholarGoogle Scholar | open url image1

Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America 81, 8014–8018.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Shoaib A, Arabi MIE (2006) Genetic diversity among Syrian cultivated and landraces wheat revealed by AFLP markers. Genetic Resources and Crop Evolution 53, 901–906.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Smale M, Reynolds MP, Warburton M, Skovmand B, Trethowan R, Singh RP, Ortiz-Monasterio I, Crossa J (2002) Dimensions of diversity in modern spring bread wheat in developing countries from 1965. Crop Science 42, 1766–1779. open url image1

Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) Theoretical and Applied Genetics 109, 1105–1114.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Stodart BJ, Mackay M, Raman H (2005) AFLP & SSR analysis of genetic diversity among landraces of bread wheat (Triticum aestivum L. em.Thell) from different geographic regions. Australian Journal of Agricultural Research 56, 691–697.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Virk PS, Zhu J, Newbury HJ, Bryan GJ, Jackson MT, Ford-Lloyd BV (2000) Effectiveness of different classes of molecular marker for classifying and revealing variation in rice (Oryza sativa) germplasm. Euphytica 112, 275–284.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ward RW, Yang ZL, Kim HS, Yen C (1998) Comparative analysis of RFLP diversity in landraces of Triticum aestivum and collections of T. tauschii from china and Southwest Asia. Theoretical and Applied Genetics 96, 312–318.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150, 899–909.
CAS | PubMed |
open url image1

Zhang P, Dreisigacker S, Buerkert A, Alkhanjari S, Melchinger AE, Warburton ML (2006) Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers. Genetic Resources and Crop Evolution 53, 1351–1360.
Crossref | GoogleScholarGoogle Scholar | open url image1