Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Effects of stocking rate in spring on liveweight and wool production of sheep grazing annual pastures

AN Thompson, PT Doyle and M Grimm

Australian Journal of Agricultural Research 45(2) 367 - 389
Published: 1994

Abstract

Two experiments examined the effects of different stocking rates in spring, and hence the availability of annual pastures, on changes in liveweight and wool production in Merino wethers (Experiments 1 and 2 respectively: age 5 and 2+-year-old; liveweight 63.8 ¦ 0.64 (s.e.m.) kg and 43.8 ¦ 0.34 kg; condition score 3.9% 0.14 and 3.l ¦ 0-08). In Experiment 1, stocking rates were 8, 16, 24, 32 and 40 sheep/ha from 8 August, 1989 f9r 122 days; Experiment 2 involved an additional stocking rate of 48 sheep/ha from 23 August, 1990 for 98 days. Feed on offer (FOO kg DM/ha) declined (P < 0.01) linearly as stocking rate increased. Stocking rate and initial FOO (ranging between 1100 and 7000 kg DM/ha) had no significant effects on pasture growth rate (PGR) through most of spring. Late in spring, increased stocking rates resulted in greater (P < 0.05) PGR. The total amount of pasture produced in the grazing period was not significantly affected by stocking rate (Expt 1, 7530 to 8200 kg DM/ha; Expt 2, 6390 to 6860 kg DM/ha). The relationships between liveweight change (LWC) or wool growth rates (WGR) and FO, during the period until pasture wilting at the lowest stocking rate (83 days in Expt 1; 76 days in Expt 2), were described by Mitscherlich equations. More than 74% of the variation in LWC or WGR was explained by differences in green FOO. In Expts 1 and 2 respectively, more than 90% of the maximum liveweight gain (66 and 192 g/day) was achieved at a FOO of 4000 or 3000 kg DM/ha, and sheep maintained weight at 2000 or 1000 kg DM/ha. More than 90% of the maximum WGR (22.3 and 19.0 g/day) was achieved at a FOO of 3000 or 2000 kg DM/ha. More than 70% of the variation in WGR was explained by LWC in both experiments. The slopes of the linear relationships were 0.047 g wool/g LWC in Expt 1, and 0.024 g wool/g LWC in Expt 2. At liveweight maintenance, sheep produced 15% less (Expt 1) or 25% less (Expt 2) wool than those grazed under conditions which allowed maximum rates of liveweight gain. Fibre diameter (FD) and length of wool grown were affected in the same manner as WGR by increases in FOO and hence LWC. In Expts 1 and 2 respectively, total clean wool weights were reduced by 17 and 9 g, mean FD by 0.05 and 0.02 microns and staple length by 0.35 and 0.13 mm, for each increase of one sheep/ha during the spring treatment periods. The effects of stocking rate in spring on annual wool production, mean FD and staple length were described by linear (P < 0.05 to P < 0.01) relationships. Standard deviation of midside FD (Expt 2), staple strength and position of break (both experiments) did not change significantly with stocking rate. These results indicate that grazing to a lower FOO during spring can be used to manipulate the amount and characteristics of wool produced by Merino wethers grazing annual pastures in Mediterranean climates with 600-700 mm rainfall.

Keywords: sheep; stocking rate; grazing management; wool; fibre diameter

https://doi.org/10.1071/AR9940367

© CSIRO 1994

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions