Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Conformations of Virginiamycin M1 Diacetate, an Inhibitor of Guinea Pig Brain CCK-B Receptors, in Selected Solvents

Kevin Walsworth A , Anastasiya Bender A , Frances Separovic https://orcid.org/0000-0002-6484-2763 B , B. Mikael Bergdahl https://orcid.org/0000-0002-7104-927X A C and Robert P. Metzger https://orcid.org/0000-0002-5189-5831 A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA.

B School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Vic. 3010, Australia.

C Corresponding authors. Email: bbergdahl@sdsu.edu; rmetzger@sdsu.edu

Australian Journal of Chemistry 73(3) 230-235 https://doi.org/10.1071/CH19577
Submitted: 7 November 2019  Accepted: 8 January 2020   Published: 31 January 2020

Abstract

The Virginiamycin M1 derivative Virginiamycin-14,16-diacetate (VM1-diAc) is not naturally occurring and must be synthesised by those wishing to study its properties. It possesses very little if any of the antibiotic capabilities of its parent compound, Virginiamycin M1. However, VM1-diAc has been reported to bind competitively to guinea pig brain cholecystokinin (CCK-B) receptors at concentrations very near that of CCK-B itself. CCK-B may bind to the CCK-B receptor as an octa- or a tetrapeptide, suggesting that a portion of the VM1-diAc molecule has a conformation very similar to the binding site of the CCKB peptide. Since the conformations of the VM1-diAc are constrained by its cyclic structure, studies of its binding to the CCK-B receptor might provide useful information about the CCK-B peptide receptor binding. To begin such a project, we report herein results of a study of the conformations of VM1-diAc dissolved in chloroform and methanol, two solvents of different polarities.


References

[1]  P. Kämpfer, in The Prokaryotes (Eds M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, E. Stackebrandt) 2006, pp. 538–604 (Springer: New York, NY).

[2]  T. A. Mukhtar, G. D. Wright, Chem. Rev. 2005, 105, 529.
         | Crossref | GoogleScholarGoogle Scholar | 15700955PubMed |

[3]  J. M. Paris, J. C. Barrière, C. Smith, P. E. Bost, in Recent Progress in the Chemical Synthesis of Antibiotics (Eds G. Lukacs, M. Ohno) 1990, pp. 183–248 (Springer: Berlin).

[4]  B. T. Porse, R. A. Garrett, J. Mol. Biol. 1999, 286, 375.
         | Crossref | GoogleScholarGoogle Scholar | 9973558PubMed |

[5]  J. L. Hansen, P. B. Moore, T. A. Steitz, J. Mol. Biol. 2003, 330, 1061.
         | Crossref | GoogleScholarGoogle Scholar | 12860128PubMed |

[6]  D. Tu, G. Blaha, P. B. Moore, T. A. Steitz, Cell 2005, 121, 257.
         | Crossref | GoogleScholarGoogle Scholar | 15851032PubMed |

[7]  J. Dang, B. M. Bergdahl, F. Separovic, R. T. C. Brownlee, R. P. Metzger, Aust. J. Chem. 2004, 57, 415.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. Dang, F. Separovic, B. M. Bergdahl, R. T. C. Brownlee, R. P. Metzger, Org. Biomol. Chem. 2004, 2, 2919.
         | Crossref | GoogleScholarGoogle Scholar | 15480455PubMed |

[9]  J. Dang, R. P. Metzger, R. T. C. Brownlee, C. A. Ng, M. Bergdahl, F. Separovic, Eur. Biophys. J. 2005, 34, 383.
         | Crossref | GoogleScholarGoogle Scholar | 15834559PubMed |

[10]  C. A. Ng, W. Zhao, J. Dang, M. Bergdahl, F. Separovic, R. T. C. Brownlee, R. P. Metzger, Biochim. Biophys. Acta. Proteins Proteomics 1774, 2007, 610.

[11]  C.-K. Lee, M. Minami, S. Sakuda, T. Nihira, Y. Yamada, Antimicrob. Agents Chemother. 1996, 40, 595.
         | Crossref | GoogleScholarGoogle Scholar | 8851577PubMed |

[12]  Y. J. T. Lam, P. Dai, D. L. Zink, A. J. Smith, N. W. Lee, S. Freedman, M. J. Salvatore, J. Antibiot. (Tokyo) 1993, 46, 623.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  N. K. Sharma, N. Hosten, M. J. O. Anteunis, Bull. Soc. Chim. Belg. 1988, 97, 185.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  R. R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions 1987 (Clarendon Press: Oxford).

[15]  T. D. W. Claridge, High-Resolution NMR Techniques in Organic Chemistry 1999 (Pergamon Press: New York, NY).

[16]  S. Braun, H.-O. Kalinowski, S. Berger, 150 and More Basic NMR Experiments 1988 (Wiley-VCH: Weinheim).

[17]  A. Bax, D. G. Davis, J. Magn. Reson. 1985, 63, 207.

[18]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01 2016 (Gaussian, Inc.: Wallingford, CT).