Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Switching On/Off the Intramolecular Hydrogen Bonding of 2-Methoxyphenol Conformers: An NMR Study

Frederick Backler A and Feng Wang https://orcid.org/0000-0002-6584-0516 A B
+ Author Affiliations
- Author Affiliations

A Centre for Translational Atomaterials, Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Vic. 3122, Australia.

B Corresponding author. Email: fwang@swin.edu.au

Australian Journal of Chemistry 73(3) 222-229 https://doi.org/10.1071/CH19600
Submitted: 20 November 2019  Accepted: 7 January 2020   Published: 25 February 2020

Abstract

Intramolecular hydrogen bonding of 2-methoxyphenol (2-MP, guaiacol) is studied using NMR spectroscopy combined with quantum mechanical density functional theory (DFT) calculations. The hydrogen bonding of OH⋯O and HO⋯H is switched on in the conformers of anti–syn (AS, 99.64 % dominance) and anti–gauche (AG), respectively, with respect to the anti–anti (AA) conformer (without either such hydrogen bonding interactions). It confirms that the 13C and 1H NMR chemical shift of AS dominates the measured NMR spectra, as the AS conformer reproduces the measurements in CDCl3 solvent (RMSD of 1.86 ppm for 13C NMR and of 0.27 ppm for 1H NMR). The chemical shift of hydroxyl H(1) at 5.66 pm is identified as the fingerprint of the OH(1)⋯OCH3 hydrogen bonding in AS, as it exhibits a significant deshielding from H(1) of AA (4.24 ppm) and H(1) of AG (4.38 ppm) without such OH(1)⋯OCH3 hydrogen bonding. The AG conformer (C1 point group symmetry) possesses a less strong hydrogen bonding of HO⋯HCH2O, with the methoxyl group out of the aromatic phenol plane. The substituent effect of AG due to the resonance interaction of methoxyl being out of plane in a concentrated solution shifts the ortho- and para-aromatic carbons, C(3)/C(5), of the AG to ~125.05/125.44 ppm from the corresponding carbons in AS at 108.81/121.60 ppm. The hydrogen bonding exhibits inwards reduction of IR frequency regions of AS and AG from AA. Finally, energy decomposition analysis (EDA) indicates that there is a steric energy of 45.01 kcal mol−1 between the AS and AG when different intramolecular hydrogen bonding is switched on.


References

[1]  J. C. Dean, P. Navotnaya, A. P. Parobek, R. M. Clayton, T. S. Zwier, J. Chem. Phys. 2013, 139, 144313.
         | Crossref | GoogleScholarGoogle Scholar | 24116625PubMed |

[2]  F. Chen, L. Selvam, F. Wang, Chem. Phys. Lett. 2010, 493, 358.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  G. R. Desiraju, Acc. Chem. Res. 1996, 29, 441.
         | Crossref | GoogleScholarGoogle Scholar | 23618410PubMed |

[4]  C. Agache, V. I. Popa, Monatsh. Chem. 2006, 137, 55.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. Ganesan, N. Mohammadi, F. Wang, RSC Adv. 2014, 4, 8617.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  F. Wang, S. Chatterjee, J. Phys. Chem. B 2017, 121, 4745.
         | Crossref | GoogleScholarGoogle Scholar | 28402662PubMed |

[7]  S. Islam, A. Ganesan, R. Auchettl, O. Plekan, R. G. Acres, F. Wang, K. C. Prince, J. Chem. Phys. 2018, 149, 134312.
         | Crossref | GoogleScholarGoogle Scholar | 30292192PubMed |

[8]  O. V. Dorofeeva, I. F. Shishkov, N. M. Karasev, L. V. Vilkov, H. Oberhammer, J. Mol. Struct. 2009, 933, 132.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  L. Cesari, L. Canabady-Rochelle, F. Mutelet, Struct. Chem. 2018, 29, 179.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. Cuisset, C. Coeur, G. Mouret, W. Ahmad, A. Tomas, O. Pirali, J. Quant. Spectrosc. Radiat. Transf. 2016, 179, 51.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  B. A. Cornell, F. Separovic, A. J. Baldassi, R. Smith, Biophys. J. 1988, 53, 67.
         | Crossref | GoogleScholarGoogle Scholar | 19431717PubMed |

[12]  M.-A. Sani, F. Separovic, Chem. – Eur. J. 2018, 24, 286.
         | Crossref | GoogleScholarGoogle Scholar | 29068097PubMed |

[13]  H.-G. Korth, M. I. de Heer, P. Mulder, J. Phys. Chem. A 2002, 106, 8779.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  M. A. Varfolomeev, D. I. Abaidullina, B. N. Solomonov, S. P. Verevkin, V. N. Emel’yanenko, J. Phys. Chem. B 2010, 114, 16503.
         | Crossref | GoogleScholarGoogle Scholar | 21086965PubMed |

[15]  F. Backler, F. Wang, J. Mol. Graph. Model. 2020, 95, 107486.
         | Crossref | GoogleScholarGoogle Scholar | 31744771PubMed |

[16]  P. Hobza, Z. Havlas, Chem. Rev. 2000, 100, 4253.
         | Crossref | GoogleScholarGoogle Scholar | 11749346PubMed |

[17]  E. Fujimaki, A. Fujii, T. Ebata, N. Mikami, J. Chem. Phys. 1999, 110, 4238.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  P. Pulay, J. F. Hinton, K. Wolinski, in Nuclear Magnetic Shieldings and Molecular Structure (Ed. J. A. Tossell) 1993, pp. 243–262 (Springer Netherlands: Dordrecht).

[19]  B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, S. Gabriel, P. J. Stephens, J. Phys. Chem. A 2002, 106, 6102.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  National Institute of Advanced Industrial Science and Technology (AIST), Spectral Database for Organic Compounds SDBS 1999 (AIST: Tsukuba, Ibaraki, Japan).

[21]  S. Hwang, C.-H. Lee, I.-S. Ahn, J. Ind. Eng. Chem. 2008, 14, 487.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A.03 2016 (Gaussian, Inc.: Wallingford, CT).

[24]  F. Wang, M. T. Downton, N. Kidwani, J. Theor. Comput. Chem. 2005, 04, 247.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  I. I. Schuster, M. Parvez, A. J. Freyer, J. Org. Chem. 1988, 53, 5819.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  L. Ernst, Tetrahedron Lett. 1974, 15, 3079.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  F. Wang, S. Islam, V. Vasilyev, Materials 2015, 8, 7723.
         | Crossref | GoogleScholarGoogle Scholar | 28793673PubMed |

[28]  A. Ganesan, N. Mohammadi, F. Wang, RSC Adv. 2014, 4, 8617.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  A. Ganesan, F. Wang, C. Falzon, J. Comput. Chem. 2011, 32, 525.
         | Crossref | GoogleScholarGoogle Scholar | 20806261PubMed |