Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Effect of Solvent on the Seebeck Coefficient and Thermocell Performance of Cobalt Bipyridyl and Iron Ferri/Ferrocyanide Redox Couples

Abuzar Taheri A , Douglas R. MacFarlane B , Cristina Pozo-Gonzalo A and Jennifer M. Pringle A C
+ Author Affiliations
- Author Affiliations

A ARC Centre of Excellence for Electromaterials Science, Deakin University, 221 Burwood Highway, Burwood, Vic. 3125, Australia.

B School of Chemistry, Monash University, Wellington Road, Clayton, Vic. 3800, Australia.

C Corresponding author. Email: jenny.pringle@deakin.edu.au

Australian Journal of Chemistry 72(9) 709-716 https://doi.org/10.1071/CH19245
Submitted: 31 May 2019  Accepted: 10 July 2019   Published: 2 August 2019

Abstract

The conversion of thermal energy to electricity using thermoelectrochemical cells (thermocells) is a developing approach to harvesting waste heat. The performance of a thermocell is highly dependent on the solvent used in the electrolyte, but the interplay of the various solvent effects is not yet well understood. Here, using the redox couples [Co(bpy)3][BF4]2/3 (bpy = 2,2′-bipyridyl) and (Et4N)3/(NH4)4Fe(CN)6, which have been designed to allow dissolution in different solvent systems (aqueous, non-aqueous, and mixed solvent), the effect of solvent on the Seebeck coefficient (Se) and cell performance was studied. The highest Se for a cobalt-based redox couple measured thus far is reported. Different trends in the Seebeck coefficients of the two redox couples as a function of the ratio of organic solvent to water were observed. The cobalt redox couple produced a more positive Se in organic solvent than in water, whereas addition of water to organic solvent resulted in a more negative Se for Fe(CN)6 3−/4−. UV-vis and IR investigations of the redox couples indicate that Se is affected by changes in solvent–ligand interactions in the different solvent systems.


References

[1]  M. F. Dupont, D. R. MacFarlane, J. M. Pringle, Chem. Commun. 2017, 6288.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  T. Quickenden, Y. Mua, J. Electrochem. Soc. 1995, 142, 3985.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) S. Sahami, M. J. Weaver, J. Electroanal. Chem. Interfacial Electrochem. 1981, 122, 155.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) E. L. Yee, R. J. Cave, K. L. Guyer, P. D. Tyma, M. J. Weaver, J. Am. Chem. Soc. 1979, 101, 1131.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) T. J. Abraham, D. R. MacFarlane, J. M. Pringle, Energy Environ. Sci. 2013, 6, 2639.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. A. Lazar, D. Al-Masri, D. R. MacFarlane, J. M. Pringle, Phys. Chem. Chem. Phys. 2016, 18, 1404.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Migita, N. Tachikawa, Y. Katayama, T. Miura, Electrochemistry 2009, 77, 639.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  Y. Yamato, Y. Katayama, T. Miura, J. Electrochem. Soc. 2013, 160, H309.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  J. T. Hupp, M. J. Weaver, Inorg. Chem. 1984, 23, 3639.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  L. Zhang, T. Kim, N. Li, T. J. Kang, J. Chen, J. M. Pringle, M. Zhang, A. H. Kazim, S. Fang, C. Haines, Adv. Mater. 2017, 29, 1605652.
         | Crossref | GoogleScholarGoogle Scholar | 29239517PubMed |

[8]  T. Kim, J. S. Lee, G. Lee, H. Yoon, J. Yoon, T. J. Kang, Y. H. Kim, Nano Energy 2017, 31, 160.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  Y. Marcus, Chem. Rev. 2009, 109, 1346.
         | Crossref | GoogleScholarGoogle Scholar | 19236019PubMed |

[10]  J. Duan, G. Feng, B. Yu, J. Li, M. Chen, P. Yang, J. Feng, K. Liu, J. Zhou, Nat. Commun. 2018, 9, 5146.
         | Crossref | GoogleScholarGoogle Scholar | 30514952PubMed |

[11]  S. Fendt, S. Padmanabhan, H. W. Blanch, J. M. Prausnitz, J. Chem. Eng. Data 2011, 56, 31.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. Ue, K. Ida, S. Mori, J. Electrochem. Soc. 1994, 141, 2989.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. Tariq, K. Shimizu, J. Esperança, J. C. Lopes, L. Rebelo, Phys. Chem. Chem. Phys. 2015, 17, 13480.
         | Crossref | GoogleScholarGoogle Scholar | 25933136PubMed |

[14]  (a) N. M. J. N. Ibrahim, S. M. Said, M. M. I. M. Hasnan, M. F. M. Sabri, N. Abdullah, A. Mainal, M. F. M. Salleh, T. F. T. M. N. Izam, Mater. Chem. Phys. 2019, 232, 169.
      (b) Y. Katayama, S. Nakayama, N. Tachikawa, K. Yoshii, J. Electrochem. Soc. 2017, 164, H5286.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  A. Taheri, D. R. MacFarlane, C. Pozo Gonzalo, J. M. Pringle, Electrochim. Acta 2019, 297, 669.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  Y. Marcus, Chem. Soc. Rev. 1993, 22, 409.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. Schmeisser, P. Illner, R. Puchta, A. Zahl, R. van Eldik, Chem. – Eur. J. 2012, 18, 10969.
         | Crossref | GoogleScholarGoogle Scholar | 22806990PubMed |

[18]  J. He, D. Al-Masri, D. R. MacFarlane, J. M. Pringle, Faraday Discuss. 2016, 190, 205.
         | Crossref | GoogleScholarGoogle Scholar | 27200437PubMed |

[19]  T. J. Kang, S. Fang, M. E. Kozlov, C. S. Haines, N. Li, Y. H. Kim, Y. Chen, R. H. Baughman, Adv. Funct. Mater. 2012, 22, 477.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  S. Le Caër, G. Vigneron, J. Renault, S. Pommeret, Chem. Phys. Lett. 2006, 426, 71.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  P. Deb, T. Haldar, S. M. Kashid, S. Banerjee, S. Chakrabarty, S. Bagchi, J. Phys. Chem. B 2016, 120, 4034.
         | Crossref | GoogleScholarGoogle Scholar | 27090068PubMed |

[22]  (a) T. P. Gerasimova, S. A. Katsyuba, Dalton Trans. 2013, 1787.
         | Crossref | GoogleScholarGoogle Scholar | 23165737PubMed |
      (b) R. Inskeep, J. Inorg. Nucl. Chem. 1962, 24, 763.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  (a) R. R. Ruminski, J. D. Petersen, Inorg. Chim. Acta 1984, 88, 63.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K. Yamasaki, Bull. Chem. Soc. Jpn. 1937, 12, 390.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  (a) J. J. Alexander, H. B. Gray, J. Am. Chem. Soc. 1968, 90, 4260.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. B. Gray, N. Beach, J. Am. Chem. Soc. 1963, 85, 2922.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  S. Radha, P. V. Kamath, Bull. Mater. Sci. 2013, 36, 923.
         | Crossref | GoogleScholarGoogle Scholar |