Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Elusive Nitro-Functionalised Member of the IRMOF-9 Family

Luke Conte A , Tian-You Zhou B , Omid T. Qazvini B , Lujia Liu C , David R. Turner D , Shane G. Telfer B and Christopher Richardson https://orcid.org/0000-0002-5804-6322 A E
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Biomolecular Science, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia.

B MacDiarmid Institute of Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand.

C Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.

D School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

E Corresponding author. Email: chris_richardson@uow.edu.au

Australian Journal of Chemistry 72(10) 811-816 https://doi.org/10.1071/CH19194
Submitted: 30 April 2019  Accepted: 4 July 2019   Published: 23 July 2019

Abstract

The solvothermal reaction of 2-nitro-[1,1′‐biphenyl]‐4,4′‐dicarboxylic acid (H2bpdcNO2) with Zn(NO3)2·6H2O in DMF solvent does not give a functionalised variant of IRMOF-9. Single-crystal X-ray diffraction analysis shows the major initial product of this reaction, WUF-21 (WUF = Wollongong University Framework), is a porous interpenetrated diamondoid metal–organic framework (MOF) with a secondary building unit that ‘doubly straps’ eight bridging bpdcNO2 ligands in a distorted tetrahedral shape around an unusual pentazinc core. A second porous MOF phase (WUF-23) containing a large and novel dodecazinc secondary building unit forms in the same reaction and eventually predominates in solutions containing formate anion, which arises from the hydrolysis of DMF. Doping the starting ligand with [1,1′‐biphenyl]‐4,4′‐dicarboxylic acid (H2bpdc) provides a facile way to grow nitro-functionalised IRMOF-9, hereafter denoted as WUF-22, where the dopant is carried through into the product. Activated WUF-22 is a microporous solid with an apparent Brunauer–Emmett–Teller (BET) surface area of 2497 m2 g−1, which matches well with geometric surface area calculations. The CO2 adsorption properties of WUF-22 are reported.


References

[1]  (a) A. D. Burrows, C. Frost, M. F. Mahon, C. Richardson, Angew. Chem. Int. Ed. 2008, 47, 8482.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. D. Burrows, C. G. Frost, M. F. Mahon, C. Richardson, Chem. Commun. 2009, 4218.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. D. Burrows, L. C. Fisher, D. Hodgson, M. F. Mahon, N. F. Cessford, T. Dueren, C. Richardson, S. P. Rigby, CrystEngComm 2012, 14, 188.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. D. Burrows, S. O. Hunter, M. F. Mahon, C. Richardson, Chem. Commun. 2013, 990.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. R. Bryant, C. Richardson, CrystEngComm 2015, 17, 8858.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) T. A. Ablott, M. Turzer, S. G. Telfer, C. Richardson, Cryst. Growth Des. 2016, 16, 7067.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. R. Bryant, A. D. Burrows, C. J. Kepert, P. D. Southon, O. T. Qazvini, S. G. Telfer, C. Richardson, Cryst. Growth Des. 2017, 17, 2016.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) M. R. Bryant, T. A. Ablott, S. G. Telfer, L. Liu, C. Richardson, CrystEngComm 2019, 21, 60.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) R. K. Deshpande, J. L. Minnaar, S. G. Telfer, Angew. Chem. Int. Ed. 2010, 49, 4598.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) D. J. Lun, G. I. N. Waterhouse, S. G. Telfer, J. Am. Chem. Soc. 2011, 133, 5806.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. K. Deshpande, G. I. Waterhouse, G. B. Jameson, S. G. Telfer, Chem. Commun. 2012, 1574.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Ferguson, L. Liu, S. J. Tapperwijn, D. Perl, F. X. Coudert, S. Van Cleuvenbergen, T. Verbiest, M. A. van der Veen, S. G. Telfer, Nat. Chem. 2016, 8, 250.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469.
         | Crossref | GoogleScholarGoogle Scholar | 11799235PubMed |

[4]  (a) T.-H. Park, K. Koh, A. G. Wong-Foy, A. J. Matzger, Cryst. Growth Des. 2011, 11, 2059.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. M. Roberts, O. K. Farha, A. A. Sarjeant, J. T. Hupp, K. A. Scheidt, Cryst. Growth Des. 2011, 11, 4747.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. Rankine, A. Avellaneda, M. R. Hill, C. J. Doonan, C. J. Sumby, Chem. Commun. 2012, 10328.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) I. Boldog, L. Xing, A. Schulz, C. Janiak, C. R. Chim. 2012, 15, 866.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) W. W. Lestari, P. Lönnecke, M. B. Sárosi, H. C. Streit, M. Adlung, C. Wickleder, M. Handke, W.-D. Einicke, R. Gläser, E. Hey-Hawkins, CrystEngComm 2013, 15, 3874.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) R. Babarao, C. J. Coghlan, D. Rankine, W. M. Bloch, G. K. Gransbury, H. Sato, S. Kitagawa, C. J. Sumby, M. R. Hill, C. J. Doonan, Chem. Commun. 2014, 3238.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) P. V. Dau, S. M. Cohen, Inorg. Chem. 2015, 54, 3134.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) S. Glomb, D. Woschko, G. Makhloufi, C. Janiak, ACS Appl. Mater. Interfaces 2017, 9, 37419.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) P. V. Dau, S. M. Cohen, CrystEngComm 2013, 15, 9304.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L.-R. Guo, X.-L. Tang, Z.-H. Ju, K.-M. Zhang, H.-E. Jiang, W.-S. Liu, CrystEngComm 2013, 15, 9020.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. A. Gotthardt, S. Grosjean, T. S. Brunner, J. Kotzel, A. M. Ganzler, S. Wolf, S. Bräse, W. Kleist, Dalton Trans. 2015, 16802.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Halis, N. Reimer, A. Klinkebiel, U. Lüning, N. Stock, Microporous Mesoporous Mater. 2015, 216, 13.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  P. Jain, N. S. Dalal, B. H. Toby, H. W. Kroto, A. K. Cheetham, J. Am. Chem. Soc. 2008, 130, 10450.
         | Crossref | GoogleScholarGoogle Scholar | 18636729PubMed |

[7]  A. L. Spek, Acta Crystallogr. Sect. D 2009, D65, 148.

[8]  A. D. Burrows, L. C. Fisher, C. Richardson, S. P. Rigby, Chem. Commun. 2011, 47, 3380.

[9]  A. Khansari, S. G. Telfer, C. Richardson, Cryst. Growth Des. 2019, 19, 268.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  T. Düren, F. Millange, G. Férey, K. S. Walton, R. Q. Snurr, J. Phys. Chem. C 2007, 111, 15350.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) S. Orefuwa, E. Iriowen, H. Yang, B. Wakefield, A. Goudy, Microporous Mesoporous Mater. 2013, 177, 82.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) D. C. Young, H. Yang, S. G. Telfer, P. E. Kruger, Inorg. Chem. 2017, 56, 12224.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  FSProcess 1996 (Rigaku Corporation: Tokyo).

[13]  G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, A71, 3.

[14]  G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, A64, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, C71, 3.

[16]  O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  D. Aragao, J. Aishima, H. Cherukuvada, R. Clarken, M. Clift, N. P. Cowieson, D. J. Ericsson, C. L. Gee, S. Macedo, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Rostan, R. Williamson, T. T. Caradoc-Davies, J. Synchrotron Radiat. 2018, 25, 885.
         | Crossref | GoogleScholarGoogle Scholar | 29714201PubMed |