Adsorption of PtCl62− from Hydrochloric Acid Solution by Chemically Modified Lignin Based on Rice Straw
Baoping Zhang A B C , Bowen Shen A B , Meichen Guo A B and Yun Liu A BA The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China.
B Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China.
C Corresponding author. Email: zhangbaoping@wust.edu.cn
Australian Journal of Chemistry 71(12) 931-938 https://doi.org/10.1071/CH18282
Submitted: 7 June 2018 Accepted: 19 September 2018 Published: 15 October 2018
Abstract
A novel adsorbent with the properties of selective adsorption based on rice straw was used to adsorb PtCl62− from hydrochloric acid solution by batch sorption. Many influencing factors for PtCl62− adsorption, such as initial concentration of PtCl62−, adsorption time, and concentration of hydrochloric acid, were optimized. The results suggested that the saturation adsorption capacity of PtCl62− was 218.8 mg g−1 and the equilibrium adsorption time was 120 min. The adsorbent had excellent selectivity on PtCl62− when the concentration of hydrochloric acid was lower than 0.5 mol L−1. The adsorption fitted well with the Langmuir isotherm model and pseudo-second-order kinetics model. The adsorption mechanism was investigated by FT-IR and X-ray photoelectron spectroscopy analyses and it indicated that PtIV was reduced to PtII by hydroxy groups and then coordinated with N through ion exchange between Cl− and PtCl42−.
References
[1] H. Y. Gu, Y. H. Lu, X. T. He, Precious Met. 2016, 37, 94.[2] J. H. Jung, H. J. Park, J. Kim, S. H. Hur, J. Power Sources 2014, 248, 1156.
| Crossref | GoogleScholarGoogle Scholar |
[3] A. N. Nikoloski, K. L. Ang, D. Li, Hydrometallurgy 2015, 152, 20.
| Crossref | GoogleScholarGoogle Scholar |
[4] R. Cayumil, R. Khanna, R. Rajarao, P. S. Mukherjee, V. Sahajwalla, Waste Manag. 2016, 57, 121.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. K. Jha, J. C. Lee, M. S. Kim, J. Jeong, B. S. Kim, V. Kumar, Hydrometallurgy 2013, 133, 23.
| Crossref | GoogleScholarGoogle Scholar |
[6] Ł. Klapiszewski, M. Wysokowski, I. Majchrzak, T. Szatkowski, M. Nowacka, K. S. Stefańska, K. S. Rzepka, P. Bartczak, H. Ehrlich, T. Jesionowski, J. Nanomater. 2013, 20, 12.
[7] M. Wysokowski, Ł. Klapiszewski, D. Moszyński, P. Bartczak, T. Szatkowski, I. Majchrzak, K. S. Stefańska, V. V. Bazhenov, T. Jesionowski, Mar. Drugs 2014, 12, 2245.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. Jakóbik-Kolon, J. Bok-Badura, K. Karoń, K. Mitko, A. Milewski, Carbohydr. Polym. 2017, 169, 213.
| Crossref | GoogleScholarGoogle Scholar |
[9] N. A. Negm, M. G. A. E. Wahed, A. R. A. Hassan, M. T. H. A. Kana, J. Mol. Liq. 2018, 264, 292.
| Crossref | GoogleScholarGoogle Scholar |
[10] N. Saman, J. W. Tan, S. S. Mohtar, H. Kong, J. W. P. Lye, K. Johari, H. Hassan, H. Mat, Biochem. Eng. J. 2018, 136, 78.
| Crossref | GoogleScholarGoogle Scholar |
[11] S. Liang, X. Y. Guo, N. C. Feng, Q. H. Tian, J. Hazard. Mater. 2010, 174, 756.
| Crossref | GoogleScholarGoogle Scholar |
[12] E. Lorenc-Grabowska, P. Rutkowski, Appl. Surf. Sci. 2014, 316, 435.
| Crossref | GoogleScholarGoogle Scholar |
[13] G. Z. Kyzas, E. A. Deliyanni, K. A. Matis, Colloid. Surf. A. 2016, 490, 74.
| Crossref | GoogleScholarGoogle Scholar |
[14] H. M. Cai, G. J. Chen, C. Y. Peng, Z. Z. Zhang, Y. Y. Dong, G. Z. Shang, X. H. Zhu, H. J. Gao, X. C. Wan, Appl. Surf. Sci. 2015, 328, 34.
| Crossref | GoogleScholarGoogle Scholar |
[15] M. Kılıç, Ç. Kırbıyık, Ö. Çepelioğullar, A. E. Pütün, Appl. Surf. Sci. 2013, 283, 856.
| Crossref | GoogleScholarGoogle Scholar |
[16] J. L. Espinoza-Acosta, P. I. Torres-Chávez, J. L. Olmedo-Martínez, A. Vega-Rios, S. Flores-Gallardo, E. A. Zaragoza-Contreras, J. Energy Chem 2018, 27, 1422.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. Duval, M. Lawoko, React. Funct. Polym. 2014, 85, 78.
| Crossref | GoogleScholarGoogle Scholar |
[18] Y. Wu, S. Z. Zhang, X. Y. Guo, H. L. Huang, Bioresour. Technol. 2008, 99, 7709.
| Crossref | GoogleScholarGoogle Scholar |
[19] B. O. Ogunsile, M. O. Bamgboye, J. Environ. Chem. Eng. 2017, 5, 2708.
| Crossref | GoogleScholarGoogle Scholar |
[20] K. Khunathai, M. Matsueda, B. K. Biswas, H. Kawakita, K. Ohto, H. Harada, K. Inoue, M. Funaoka, S. Alam, J. Chem. Eng. Jpn. 2011, 44, 781.
| Crossref | GoogleScholarGoogle Scholar |
[21] D. Parajuli, K. Hirota, K. Inoue, Ind. Eng. Chem. Res. 2009, 48, 10163.
| Crossref | GoogleScholarGoogle Scholar |
[22] D. Parajuli, K. Inoue, K. Ohto, T. Oshima, A. Murota, M. Funaoka, K. Makino, React. Funct. Polym. 2005, 62, 129.
| Crossref | GoogleScholarGoogle Scholar |
[23] K. Khunathai, D. Parajuli, K. Ohto, H. Kawakita, H. Harada, K. Inoue, K. Hirota, M. Funaoka, Solvent Extr. Ion Exch. 2010, 28, 403.
| Crossref | GoogleScholarGoogle Scholar |
[24] R. Wahlström, A. Kalliola, J. Heikkinen, H. Kyllönen, T. Tamminen, Ind. Crops Prod. 2017, 104, 188.
| Crossref | GoogleScholarGoogle Scholar |
[25] Y. Y. Ge, L. Qin, Z. L. Li, Mater. Des. 2016, 95, 141.
| Crossref | GoogleScholarGoogle Scholar |
[26] M. F. Yan, Z. L. Li, Mater. Lett. 2016, 170, 135.
| Crossref | GoogleScholarGoogle Scholar |
[27] L. Klapiszewski, P. Bartczak, M. Wysokowski, M. Jankowska, K. Kabat, T. Jesionowski, Chem. Eng. J. 2015, 260, 684.
| Crossref | GoogleScholarGoogle Scholar |
[28] V. Nair, A. Panigrahy, R. Vinu, Chem. Eng. J. 2014, 254, 491.
| Crossref | GoogleScholarGoogle Scholar |
[29] F. B. Liang, Y. L. Song, C. P. Huang, J. Zhang, B. H. Chen, J. Environ. Chem. Eng. 2013, 1, 1301.
| Crossref | GoogleScholarGoogle Scholar |
[30] A. Keränen, T. Leiviskä, B. Y. Gao, O. Hormi, J. Tanskanen, Chem. Eng. J. 2013, 98, 59.
| Crossref | GoogleScholarGoogle Scholar |
[31] W. D. Wang, J. W. Zhang, J. F. Zheng, Q. F. Lu, Ciesc. J. 2013, 64, 1478.
[32] B. B. Adhikari, M. Gurung, S. Alam, B. Tolnai, K. Inoue, Chem. Eng. J. 2013, 231, 190.
| Crossref | GoogleScholarGoogle Scholar |
[33] M. Z. Chandra, Mubarok, Miner. Eng. 2016, 89, 1.
| Crossref | GoogleScholarGoogle Scholar |
[34] B. P. Zhang, Y. Liu, Z. C. Ma, M. C. Guo, B. W. Shen, Macromol. Res. 2018, 26, 121.
| Crossref | GoogleScholarGoogle Scholar |
[35] B. P. Zhang, Z. C. Ma, Y. Liu, M. C. Guo, F. Yang, Ciesc. J. 2017, 68, 1946.
[36] B. P. Zhang, F. Yang, Z. C. Ma, M. C. Guo, Y. Liu, J. Hebei Univ. 2016, 36, 474.
[37] B. P. Zhang, Z. C. Ma, F. Yang, Y. Liu, M. C. Guo, Colloid. Surf. A. 2017, 514, 260.
| Crossref | GoogleScholarGoogle Scholar |
[38] F. Ogata, N. Kawasaki, J. Environ. Chem. Eng. 2013, 1, 1013.
| Crossref | GoogleScholarGoogle Scholar |
[39] Z. Tavassolirizi, K. Shams, M. R. Omidkhah, J. Environ. Chem. Eng. 2015, 23, 119.
[40] H. F. Wang, C. Li, C. L. Bao, L. Liu, X. T. Liu, J. Chem. Eng. Data 2011, 56, 4203.
| Crossref | GoogleScholarGoogle Scholar |
[41] T. Maruyama, Y. Terashima, S. Takeda, F. Okazaki, M. Goto, Process Biochem. 2014, 49, 850.
| Crossref | GoogleScholarGoogle Scholar |
[42] H. Sharififard, F. Zokaee Ashtiani, M. Soleimani, Asia-Pac. Chem. Eng. J. 2013, 8, 384.
| Crossref | GoogleScholarGoogle Scholar |
[43] Q. Q. Gong, X. Y. Guo, S. Liang, C. Wang, Q. H. Tian, Int. J. Environ. Sci. Technol. 2016, 13, 47.
| Crossref | GoogleScholarGoogle Scholar |
[44] Y. Xiong, C. R. Adhikari, H. Kawakita, K. Ohto, K. Inoue, H. Harada, Bioresour. Technol. 2009, 100, 4083.
| Crossref | GoogleScholarGoogle Scholar |
[45] D. Parajuli, K. Hunathai, C. R. Adhikari, K. Inoue, K. Ohto, H. Kawakita, M. Funaoka, K. Hirota, Miner. Eng. 2009, 22, 1173.
| Crossref | GoogleScholarGoogle Scholar |
[46] D. J. Garole, B. C. Choudhary, D. Paul, A. U. Borse, Environ. Sci. Pollut. Res. Int. 2018, 25, 10911.
| Crossref | GoogleScholarGoogle Scholar |
[47] M. Gurung, B. B. Adhikari, S. Alam, H. Kawakita, K. Ohto, K. Inoue, Chem. Eng. J. 2013, 228, 405.
| Crossref | GoogleScholarGoogle Scholar |
[48] K. Y. Foo, B. H. Hameed, Chem. Eng. J. 2010, 156, 2.
| Crossref | GoogleScholarGoogle Scholar |
[49] M. Brdar, M. Šćiban, A. Takači, T. Došenović, Chem. Eng. J. 2012, 183, 108.
| Crossref | GoogleScholarGoogle Scholar |
[50] Z. J. Mei, Y. Li, M. H. Fan, L. Zhao, J. Zhao, Chem. Eng. J. 2015, 259, 293.
| Crossref | GoogleScholarGoogle Scholar |
[51] P. G. Chen, Y. D. Zhang, J. X. Wang, C. Z. Wu, Synth. Fiber 2006, 35, 10.