Thiol-Reactive Analogues of Galanthamine, Codeine, and Morphine as Potential Probes to Interrogate Allosteric Binding within Nicotinic Acetylcholine Receptors
Ryan Gallagher A , Mary Chebib B , Thomas Balle B and Malcolm D. McLeod A CA Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
B Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.
C Corresponding author. Email: malcolm.mcleod@anu.edu.au
Australian Journal of Chemistry 68(12) 1834-1841 https://doi.org/10.1071/CH15475
Submitted: 6 August 2015 Accepted: 7 September 2015 Published: 6 October 2015
Abstract
Alkaloids including galanthamine (1) and codeine (2) are reported to be positive allosteric modulators of nicotinic acetylcholine receptors (nAChRs), but the binding sites responsible for this activity are not known with certainty. Analogues of galanthamine (1), codeine (2), and morphine (3) with reactivity towards cysteine thiols were synthesized including conjugated enone derivatives of the three alkaloids 4–6 and two chloro-alkane derivatives of codeine 7 and 8. The stability of the enones was deemed sufficient for use in buffered aqueous solutions, and their reactivity towards thiols was assessed by determining the kinetics of reaction with a cysteine derivative. All three enone derivatives were of sufficient reactivity and stability to be used in covalent trapping, an extension of the substituted cysteine accessibility method, to elucidate the allosteric binding sites of galanthamine and codeine at nAChRs.
References
[1] (a) M. Heinrich, H. L. Teoh, J. Ethnopharmacol. 2004, 92, 147.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVGmsL8%3D&md5=69a03fac69afcf8454109adb6e387c42CAS | 15137996PubMed |
(b) A. L. Harvey, Pharmacol. Ther. 1995, 68, 113.
| Crossref | GoogleScholarGoogle Scholar |
[2] C. Loy, L. Schneider, Cochrane Database Syst. Rev. 2004. Available at http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD001747/abstract
[3] J. Marco-Contelles, M. do Carmo Carreiras, C. Rodríguez, M. Villarroya, A. G. Garcia, Chem. Rev. 2006, 106, 116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlShtLnO&md5=8598461a987b88891e4d2afa947cdb67CAS | 16402773PubMed |
[4] T. Thomsen, B. Kaden, J. P. Fischer, U. Bickel, H. Barz, G. Gusztony, J. Cervos-Navarro, H. Kewitz, Clin. Chem. Lab. Med. 1991, 29, 487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1egtrY%3D&md5=aeaffaa9a324cd96a5c93a4f7730270eCAS |
[5] M. Samochocki, M. Zerlin, R. Jostock, P. J. Groot Kormelink, W. H. M. Luyten, E. X. Albuquerque, A. Maelicke, Acta Neurol. Scand. 2000, 102, 68.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) H. M. Greenblatt, G. Kryger, T. Lewis, I. Silman, J. L. Sussman, FEBS Lett. 1999, 463, 321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFemt7s%3D&md5=e947c1ba9bdc14d55b0ada9fdeccca57CAS | 10606746PubMed |
(b) J. Cheung, M. J. Rudolph, F. Burshteyn, M. S. Cassidy, E. N. Gary, J. Love, M. C. Franklin, J. J. Height, J. Med. Chem. 2012, 55, 10282.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) S. B. Hansen, P. Taylor, J. Mol. Biol. 2007, 369, 895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1Sjt70%3D&md5=023e39f7949f230a5d314320fa8db981CAS | 17481657PubMed |
(b) B. Iorga, D. Herlem, E. Barré, C. Guillou, J. Mol. Model. 2006, 12, 366.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. Luttmann, J. Ludwig, A. Höffle‐Maas, M. Samochocki, A. Maelicke, G. Fels, ChemMedChem 2009, 4, 1874.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. K. Hamouda, T. Kimm, J. B. Cohen, J. Neurosci. 2013, 33, 485.
| Crossref | GoogleScholarGoogle Scholar |
[8] W. C. Motel, A. Coop, C. W. Cunningham, Mini-Rev. Med. Chem. 2013, 13, 456.
| 1:CAS:528:DC%2BC3sXksVKjsrw%3D&md5=abb5cd8265a8fe9a8426a699981cf9dfCAS | 22931533PubMed |
[9] A. P. Atkinson, E. Baguet, N. Galland, J.-Y. Le Questel, A. Planchat, J. Graton, Chem. – Eur. J. 2011, 17, 11637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWjsb7N&md5=7f9ccc79c7e5999fdb907cff03bdf9dcCAS | 21887829PubMed |
[10] A. Karlin, M. H. Akabas, Methods Enzymol. 1998, 293, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFGi&md5=f2fb2bc329e020b910ffd7be14402590CAS | 9711606PubMed |
[11] S. Seo, J. T. Henry, A. H. Lewis, N. Wang, M. M. Levandoski, J. Neurosci. 2009, 29, 8734.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVKhu7o%3D&md5=3c6b46b34bfc1083755250d3016475ddCAS | 19587280PubMed |
[12] (a) S. A. Fleming, Tetrahedron 1995, 51, 12479.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVyrsr4%3D&md5=7e62190eb2595c2b2454866890bad2bdCAS |
(b) H. Bayley, Photogenerated Reagents in Biochemistry and Molecular Biology, 2nd edn 1983 (Elsevier: Amsterdam).
[13] M. A. Schwartz, in Photochemical Probes in Biochemistry (Ed. D. P. E. Nielsen) 1989, pp. 157–168 (Springer: Dordrecht).
[14] (a) B. Foucaud, P. Perret, T. Grutter, M. Goeldner, Trends Pharmacol. Sci. 2001, 22, 170.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1Wnsbs%3D&md5=bb726985d1a0845dffd30cb4935110d0CAS | 11282416PubMed |
(b) D. Berezhnoy, Y. Nyfeler, A. Gonthier, H. Schwob, M. Goeldner, E. Sigel, J. Biol. Chem. 2004, 279, 3160.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. I. Ambrus, J. I. Halliday, N. Kanizaj, N. Absalom, K. Harpsøe, T. Balle, M. Chebib, M. D. McLeod, Chem. Commun. 2012, 48, 6699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1Gkt70%3D&md5=ceb28e7cf0fb538146d53bbbe795386fCAS |
[16] G. X. J. Quek, D. Lin, J. I. Halliday, N. Absalom, J. I. Ambrus, A. J. Thompson, M. Lochner, S. C. R. Lummis, M. D. McLeod, M. Chebib, ACS Chem. Neurosci. 2010, 1, 796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Gkur7J&md5=feaebc20890b0c7b2c5e68e61c03a83fCAS |
[17] N. L. Absalom, G. Quek, T. M. Lewis, T. Qudah, I. von Arenstorff, J. I. Ambrus, K. Harpsøe, N. Karim, T. Balle, M. D. McLeod, M. Chebib, J. Biol. Chem. 2013, 288, 26521.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCls77I&md5=c15a6696a71678242b7f917886a0c4b8CAS | 23893416PubMed |
[18] W.-C. Shieh, J. A. Carlson, J. Org. Chem. 1994, 59, 5463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFOqsLw%3D&md5=607747760ac247de9f0f8573ae2f5cd8CAS |
[19] (a) B. Koleva, T. Kolev, R. Bakalska, Spectrochim. Acta, Part A 2007, 67, 196.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. P. Findlay, L. F. Small, J. Am. Chem. Soc. 1950, 72, 3247.
| Crossref | GoogleScholarGoogle Scholar |
[20] A. Zhang, C. Csutoras, R. Zong, J. L. Neumeyer, Org. Lett. 2005, 7, 3239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlKju7g%3D&md5=602dfb3d43ec77fcc6b7ec95bae345d6CAS | 16018630PubMed |
[21] (a) A. Ninan, M. Sainsbury, Tetrahedron 1992, 48, 6709.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtlCgsrk%3D&md5=486276b40fde56aec3d3ee2720a483d4CAS |
(b) S. Fang, A. E. Takemori, P. S. Portoghese, J. Med. Chem. 1984, 27, 1361.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) R. B. Barber, H. Rapoport, J. Med. Chem. 1976, 19, 1175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XltFKru7o%3D&md5=15f98f3ad001ca8952605ba9e272c063CAS | 994146PubMed |
(b) J. Gollwitzer, R. Lenz, N. Hampp, M. H. Zenk, Tetrahedron Lett. 1993, 34, 5703.
| Crossref | GoogleScholarGoogle Scholar |
[23] V. Chaudhary, H. Leisch, A. Moudra, B. Allen, V. De Luca, D. P. Cox, T. Hudlický, Collect. Czech. Chem. Commun. 2009, 74, 1179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVyntLrI&md5=6378bfac2f41d32dc6fbd6ce861bfe94CAS |
[24] (a) M. H. Hedberg, A. M. Johansson, G. Nordvall, A. Yliniemela, H. B. Li, A. R. Martin, S. Hjorth, L. Unelius, S. Sundell, U. Hacksell, J. Med. Chem. 1995, 38, 647.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsFaisb4%3D&md5=a68ae527b6d182e790fa842d9b142c39CAS | 7861413PubMed |
(b) J. L. Neumeyer, B. Zhang, T. Zhang, A. W. Sromek, B. I. Knapp, D. J. Cohen, J. M. Bidlack, J. Med. Chem. 2012, 55, 3878.
| Crossref | GoogleScholarGoogle Scholar |
[25] S. G. Davies, C. J. Goodwin, D. Pyatt, A. D. Smith, J. Chem. Soc., Perkin Trans. 1 2001, 1413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1Kku7Y%3D&md5=66099143ebe34314231fb90e9d918dbdCAS |
[26] C. Festa, G. Lauro, S. De Marino, M. V. D’Auria, M. C. Monti, A. Casapullo, C. D’Amore, B. Renga, A. Mencarelli, S. Petek, G. Bifulco, S. Fiorucci, A. Zampella, J. Med. Chem. 2012, 55, 8303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yrtr%2FJ&md5=7960aae1da0f31a10768108b18862208CAS | 22934537PubMed |
[27] S. Garadnay, Z. Gyulai, S. Makleit, A. Sipos, Cent. Eur. J. Chem. 2013, 11, 430.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXns1Sm&md5=d4a1971685b1ffd18faa7f201a4da655CAS |
[28] W. R. Roush, J. Org. Chem. 1991, 56, 4151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVOqu78%3D&md5=9464508df29c01eed15f2c1f5adf77a7CAS |