Progress in Microwave-Aided Chemical Synthesis
Hani Mutlak A. Hassan A B , Steve Harakeh A , Kaltoom A. Sakkaf A and Iuliana Denetiu AA King Fahd Medical Research Centre, King Abdulaziz University, PO Box 80216, Jeddah 21589, Kingdom of Saudi Arabia.
B Corresponding author. Email: hmahassan@kau.edu.sa
Hani Mutlak A. Hassan received a First Class with Honours master of chemistry degree from Hull University and Ph.D. from the University of Manchester’s Manchester Interdisciplinary Biocentre. After a short stay at the Department of Chemistry and then the Krebs Institute for Biomolecular Research, University of Sheffield, he took up his current appointment at King Fahd Medical Research Centre, King Abdulaziz University, as an Assistant Professor. His interests fall in the fields of organic synthesis, medicinal chemistry, and molecular medicine. |
Steve Harakeh received his Ph.D. from the University of Surrey and then moved to the United States and held positions at Stanford University, Linus Pauling Institute, and Dr. Rath Research Institute. He has worked and published with Nobel Prize Laureate Professor Linus Pauling. He held an academic position at the American University of Beirut where he became a Professor and is now at King Fahd Medical Research Centre, King Abdulaziz University. He has an eclectic background in various fields in science ranging from chemistry to molecular biology. |
Kaltoom A. Sakkaf obtained a master degree from the University of Leeds and Ph.D. from the University of Sheffield. She worked as a postdoctoral researcher at the Institute of Cancer Studies and the School of Medicine and Biomedical Science, University of Sheffield, before moving to King Abdulaziz University, as an Assistant Professor. Her current interests include chemistry and biochemistry, particularly cancer-related therapies. |
Iuliana Denetiu obtained her BSc (Pharmacy) and master degree from Grigore T. Popa University of Medicine and Pharmacy, Romania. At King Fahd Medical Research Centre, King Abdulaziz University, she is currently engaged in studying the effectiveness, safety, and toxicity of herbal medicine and drugs. |
Australian Journal of Chemistry 65(12) 1647-1654 https://doi.org/10.1071/CH12366
Submitted: 5 August 2012 Accepted: 16 September 2012 Published: 29 October 2012
Abstract
The continuing use of microwave (µwave) energy in chemical synthesis has been impressive over the past decade, with many reports incorporating µwave-based reactions. Two of the major benefits of using µwave heating are the remarkable decrease in reaction times and often high yield of products in comparison with classical heating, an ideal technology for synthetic chemists. Herein, we highlight some exciting examples of its recent utility in organic, medicinal, and natural product synthetic endeavours.
References
[1] R. N. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell, Tetrahedron Lett. 1986, 27, 279.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitVKgsLg%3D&md5=e263265181f5c6c4978d3ea835fef767CAS |
[2] R. J. Giguere, T. L. Bray, S. M. Duncan, G. Majetich, Tetrahedron Lett. 1986, 27, 4945.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlykt70%3D&md5=95720fb2856786387a791cb52dc0a663CAS |
[3] (a) C. O. Kappe, Angew. Chem. Int. Ed. 2004, 43, 6250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWrtL7O&md5=733a9a926352d8e4ba2b5c77c9f54a9fCAS |
(b) P. Lidström, J. Tierney, B. Wathey, J. Westman, Tetrahedron 2001, 57, 9225.
| Crossref | GoogleScholarGoogle Scholar |
[4] D. S. Ermolat’ev, J. B. Bariwal, H. P. L. Steenackers, S. C. J. De Keersmaecker, E. V. Van der Eycken, Angew. Chem. Int. Ed. 2010, 49, 9465.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSls77M&md5=64ae2b21e845a9cb503e7de39c8c4695CAS |
[5] F. Besselièvre, F. Mahuteau-Betzer, D. S. Grierson, S. Piguel, J. Org. Chem. 2008, 73, 3278.
| Crossref | GoogleScholarGoogle Scholar |
[6] D. Tang, J. R. Buck, M. R. Hight, H. C. Manning, Tetrahedron Lett. 2010, 51, 4595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1Cqt7k%3D&md5=4b6a52422d46591e6e03569cf335023eCAS |
[7] C. Hamel, E. V. Prusov, J. Gertsch, W. B. Schweizer, K.-H. Altmann, Angew. Chem. Int. Ed. 2008, 47, 10081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVartQ%3D%3D&md5=f585a83fad307f1902c988cae308e110CAS |
[8] J. J. Day, R. M. McFadden, S. C. Virgil, H. Kolding, J. L. Alleva, B. M. Stoltz, Angew. Chem. Int. Ed. 2011, 50, 6814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlOqu7s%3D&md5=96143991f51bce81e99f0b59861c191aCAS |
[9] D. C. K. Rathwell, S.-H. Yang, K. Y. Tsang, M. A. Brimble, Angew. Chem. Int. Ed. 2009, 121, 8140.
| Crossref | GoogleScholarGoogle Scholar |
[10] B. A. Haag, Z.-G. Zhang, J.-S. Li, P. Knochel, Angew. Chem. Int. Ed. 2010, 49, 9513.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSlsL3J&md5=0be01b8a67fd9e3e1cc1c4d8fbe91d0bCAS |
[11] S. L. Gaonkar, H. Shimizu, Tetrahedron 2010, 66, 3314.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1WgsLw%3D&md5=875c711834c0ba597605f5463ca172b1CAS |
[12] A. L. Williams, S. R. Dandepally, N. Gilyazova, S. M. Witherspoon, G. Ibeanu, Tetrahedron 2010, 66, 9577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVejsbnM&md5=59c3bbbdd1ba93c078e1f22808e176a1CAS |
[13] D. A. Mustafa, B. A. Kashemirov, C. E. McKenna, Tetrahedron Lett. 2011, 52, 2285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt12isLk%3D&md5=1bf0f926f2ace53f73208ffc66c92a57CAS |
[14] H. M. A. Hassan, F. K. Brown, Chem. Commun. 2010, 46, 3013.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFOrs7c%3D&md5=e8f86a13aa5b6fd353d96bad99b04686CAS |
[15] S.-J. Yan, C. Huang, X.-H. Zeng, R. Huang, J. Lin, Bioorg. Med. Chem. Lett. 2010, 20, 48.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2jsbjN&md5=831520bad0188a64dac399cf12fdcf20CAS |
[16] S. T. A. Shah, S. Singh, P. J. Guiry, J. Org. Chem. 2009, 74, 2179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OisLw%3D&md5=b9072e51193a17ef19a24b2834b9959aCAS |
[17] J.-S. Lee, N.-Y. Kang, Y. K. Kim, A. Samanta, S. Feng, H. K. Kim, M. Vendrell, J. H. Park, Y.-T. Chang, J. Am. Chem. Soc. 2009, 131, 10077.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKntbo%3D&md5=b89862f9bcb67637f0d37bede159e1c3CAS |
[18] G. Bartoli, G. Di Antonio, R. Giovannini, S. Giuli, S. Lanari, M. Paoletti, E. Marcantoni, J. Org. Chem. 2008, 73, 1919.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFWgu78%3D&md5=6af5b9bd4c2ab63357d20847fd2372a4CAS |
[19] L. Aguado, H. J. Thibaut, E.-M. Priego, M.-L. Jimeno, M.-J. Camarasa, J. Neyts, M.-J. Pérez-Pérez, J. Med. Chem. 2010, 53, 316.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVeku7jI&md5=94b0cb2e8fbebf5de846552abc04fa0bCAS |
[20] L. De Luca, M. L. Barreca, S. Ferro, F. Christ, N. Iraci, R. Gitto, A. M. Monforte, Z. Debyser, A. Chimirri, ChemMedChem 2009, 4, 1311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFGntr4%3D&md5=246cc0eb3ee50324481ed6200b7e3884CAS |
[21] H. Huang, H. Liu, H. Jiang, K. Chen, J. Org. Chem. 2008, 73, 6037.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFyis7c%3D&md5=898af73f2758543db0cabd5d8031acc1CAS |
[22] N. Gavande, G. A. R. Johnston, J. R. Hanrahan, M. Chebib, Org. Biomol. Chem. 2010, 8, 4131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKrsbvI&md5=d3959b308b12308345d83ed425db7a53CAS |
[23] D. M. Huryn, J. L. Brodsky, K. M. Brummond, P. G. Chambers, B. Eyer, A. W. Ireland, M. Kawasumi, M. G. LaPorte, K. Lloyd, B. Manteau, P. Nghiem, B. Quade, S. P. Seguin, P. Wipf, Proc. Natl. Acad. Sci. USA 2011, 108, 6757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslyru7w%3D&md5=7145d69e2147838ebdf4c49e0158516dCAS |