Electrochemically Directed Synthesis of Cobalt(ii) and Nickel(ii) TCNQF21–/2– Coordination Polymers: Solubility and Substituent Effects in the TCNQFn (n = 0, 1, 2, 4) Series of Complexes*
Nguyen T. Vo A B , Alan M. Bond A C and Lisandra L. Martin A CA School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
B Current address: Department of Chemistry, The University of Da Nang, University of Education and Science, 459 Ton Duc Thang, Da Nang, Vietnam.
C Corresponding authors. Email: Alan.Bond@monash.edu; Lisa.Martin@monash.edu
Australian Journal of Chemistry 73(12) 1197-1207 https://doi.org/10.1071/CH20187
Submitted: 8 June 2020 Accepted: 17 July 2020 Published: 1 September 2020
Abstract
The reversible diffusion controlled cyclic voltammetry for the reduction of TCNQFn0/1–/2– (where n = 0, 1, 2, 4) changes significantly on addition of Co2+ and Ni2+ transition metal ions (M2+) because the kinetics associated with electrocrystallisation of the resulting coordination polymers [M(TCNQF2)2(H2O)2] and [M(TCNQF2)] are rapid on the voltammetric time scale. The voltammetry of solutions containing M2+ and TCNQF2 was undertaken in acetonitrile (0.1 M Bu4NPF6) at both GC and ITO electrodes. New one electron reduced TCNQF2 materials prepared via electrochemically directed synthesis were shown to have the formula [M(TCNQF2)2(H2O)2], assessed by vibrational (IR and Raman) spectroscopy, elemental analysis and thermogravimetric analysis. The solubility of [Ni(TCNQF2)2(H2O)2] (Ksp = 8.29 × 10−11 M3) was significantly higher than the [Co(TCNQF2)2(H2O)2] (Ksp = 1.43 × 10−11 M3). Cyclic voltammetric data suggest the electrocrystallisation of two phases of [Ni(TCNQF2)2(H2O)2] occurs, which is not evident for [Co(TCNQF2)2(H2O)2]. Electrocrystallisation of the highly insoluble [M(TCNQF2)] was achieved at low M2+ and TCNQF2 concentrations. A comparison with published data on the voltammetry of TCNQFn (n = 0, 1, 2 and 4) for the series of TCNQFn (n = 0, 1, 2 and 4) containing M2+ is provided. An assessment of the electronic impact of the fluorine substituent of the underlying redox reactions also is established. Predictions are made for the voltammetric behaviour expected for the other transition metal cations with reduced TCNQFn derivatives.
References
[1] C. A. Grob, A. Kaiser, T. Schweizer, Helv. Chim. Acta 1977, 60, 391.| Crossref | GoogleScholarGoogle Scholar |
[2] K. B. Becker, C. A. Grob, Helv. Chim. Acta 1978, 61, 2596.
| Crossref | GoogleScholarGoogle Scholar |
[3] C. A. Grob, B. Schaub, M. G. Schlageter, Helv. Chim. Acta 1980, 63, 57.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. M. Bond, G. A. Lawrance, P. A. Lay, A. M. Sargeson, Inorg. Chem. 1983, 22, 2010.
| Crossref | GoogleScholarGoogle Scholar |
[5] G. A. Lawrance, P. A. Lay, A. M. Sargeson, Inorg. Chem. 1990, 29, 4808.
| Crossref | GoogleScholarGoogle Scholar |
[6] P. Zuman, Substituent Effects in Organic Polarography 1967 (Pleum Press: London).
[7] T. J. Emge, F. M. Wiygul, J. S. Chappell, A. N. Bloch, J. P. Ferraris, D. O. Cowan, T. J. Kistenmacher, Mol. Cryst. Liq. Cryst. 1982, 87, 137.
| Crossref | GoogleScholarGoogle Scholar |
[8] N. Lopez, H. H. Zhao, A. V. Prosvirin, W. Wernsdorfer, K. R. Dunbar, Dalton Trans. 2010, 39, 4341.
| Crossref | GoogleScholarGoogle Scholar | 20422092PubMed |
[9] H. Miyasaka, N. Motokawa, S. Matsunaga, M. Yamashita, K. Sugimoto, T. Mori, N. Toyota, K. R. Dunbar, J. Am. Chem. Soc. 2010, 132, 1532.
| Crossref | GoogleScholarGoogle Scholar | 20078121PubMed |
[10] J. Lieffrig, O. Jeannin, T. Guizouarn, P. Auban-Senzier, M. Fourmigué, Cryst. Growth Des. 2012, 12, 4248.
| Crossref | GoogleScholarGoogle Scholar |
[11] N. Vo, N. L. Haworth, A. M. Bond, L. L. Martin, ChemElectroChem 2018, 5, 1173.
| Crossref | GoogleScholarGoogle Scholar |
[12] N. T. Vo, A. M. Bond, L. L. Martin, Inorg. Chim. Acta 2020, 505, 119458.
| Crossref | GoogleScholarGoogle Scholar |
[13] H. Zhao, R. A. Heintz, X. Ouyang, K. R. Dunbar, C. F. Campana, R. D. Rogers, Chem. Mater. 1999, 11, 736.
| Crossref | GoogleScholarGoogle Scholar |
[14] H. H. Zhao, R. A. Heintz, K. R. Dunbar, R. D. Rogers, J. Am. Chem. Soc. 1996, 118, 12844.
| Crossref | GoogleScholarGoogle Scholar |
[15] H. Zhao, R. A. Heintz, X. Ouyang, G. Grandinetti, J. Cowen, K. R. Dunbar, in Supramolecular Engineering of Synthetic Metallic Materials: Conductors and Magnets, NATO ASI series (Eds J. Veciana, C. Rovira, D. B. Amabillino) 1999, Vol. 518, pp. 353–376 (Kluwer Academic Publishers: Dordrecht).
[16] R. Clerac, S. O’Kane, J. Cowen, X. Ouyang, R. Heintz, H. H. Zhao, M. J. Bazile, K. R. Dunbar, Chem. Mater. 2003, 15, 1840.
| Crossref | GoogleScholarGoogle Scholar |
[17] E. B. Vickers, I. D. Giles, J. S. Miller, Chem. Mater. 2005, 17, 1667.
| Crossref | GoogleScholarGoogle Scholar |
[18] E. B. Vickers, T. D. Selby, M. S. Thorum, M. L. Taliaferro, J. S. Miller, Inorg. Chem. 2004, 43, 6414.
| Crossref | GoogleScholarGoogle Scholar | 15446892PubMed |
[19] T. H. Le, A. Nafady, A. M. Bond, L. L. Martin, Eur. J. Inorg. Chem. 2012, 2012, 5534.
| Crossref | GoogleScholarGoogle Scholar |
[20] T. H. Le, A. Nafady, J. Lu, G. Peleckis, A. M. Bond, L. L. Martin, Eur. J. Inorg. Chem. 2012, 2012, 2889.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. Nafady, T. H. Le, N. Vo, N. L. Haworth, A. M. Bond, L. L. Martin, Inorg. Chem. 2014, 53, 2268.
| Crossref | GoogleScholarGoogle Scholar | 24495206PubMed |
[22] N. T. Vo, L. L. Martin, A. M. Bond, ChemElectroChem 2019, 6, 221.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. Nafady, A. M. Bond, A. Bilyk, A. R. Harris, A. I. Bhatt, A. P. O’Mullane, R. De Marco, J. Am. Chem. Soc. 2007, 129, 2369.
| Crossref | GoogleScholarGoogle Scholar | 17263534PubMed |
[24] A. Nafady, A. P. O’Mullane, A. M. Bond, Coord. Chem. Rev. 2014, 268, 101.
| Crossref | GoogleScholarGoogle Scholar |
[25] T. H. Le, A. Nafady, A. M. Bond, L. L. Martin, Eur. J. Inorg. Chem. 2012, 2012, 5534.
| Crossref | GoogleScholarGoogle Scholar |
[26] N. T. Vo, L. L. Martin, A. M. Bond, Inorg. Chim. Acta 2018, 480, 91.
| Crossref | GoogleScholarGoogle Scholar |
[27] T. H. Le, A. Nafady, N. T. Vo, R. W. Elliott, T. A. Hudson, R. Robson, B. F. Abrahams, L. L. Martin, A. M. Bond, Inorg. Chem. 2014, 53, 3230.
| Crossref | GoogleScholarGoogle Scholar | 24568268PubMed |
[28] N. L. Haworth, J. Lu, N. Vo, T. H. Le, C. D. Thompson, A. M. Bond, L. L. Martin, ChemPlusChem 2014, 79, 962.
| Crossref | GoogleScholarGoogle Scholar |
[29] T. Salzillo, M. Masino, G. Kociok-Köhn, D. Di Nuzzo, E. Venuti, R. G. Della Valle, D. Vanossi, C. Fontanesi, A. Girlando, A. Brillante, E. Da Como, Cryst. Growth Des. 2016, 16, 3028.
| Crossref | GoogleScholarGoogle Scholar |
[30] N. Castagnetti, A. Girlando, M. Masino, C. Rizzoli, C. Rovira, Cryst. Growth Des. 2017, 17, 6255.
| Crossref | GoogleScholarGoogle Scholar |
[31] A. Nafady, A. M. Bond, Inorg. Chem. 2007, 46, 4128.
| Crossref | GoogleScholarGoogle Scholar | 17447759PubMed |
[32] A. Nafady, A. M. Bond, A. Bilyk, J. Phys. Chem. C 2008, 112, 6700.
| Crossref | GoogleScholarGoogle Scholar |
[33] T. H. Le, A. Nafady, J. Lu, G. Peleckis, A. M. Bond, L. L. Martin, Eur. J. Inorg. Chem. 2012, 2012, 2889.
| Crossref | GoogleScholarGoogle Scholar |
[34] P. Bandyopadhyay, D. Bera, S. Banerjee, in Handbook of Specialty Fluorinated Polymers (Ed. S. Banerjee) 2015, Ch. 4, pp. 187–226 (William Andrew Publishing: Amsterdam).