Self-assembled monolayers: a journey from fundamental tools for understanding interfaces to commercial sensing technologies
Essam M. Dief A , Richard D. Tilley A and J. Justin Gooding A *A
Abstract
Self-assembled monolayers were first described in the 1980s and have now become ubiquitous in many interfacial technologies. In this account, we discuss different self-assembled monolayer systems, outlining their positives and negatives. We then overview other researchers’ work and our own group’s journey in using self-assembled monolayers to develop new concepts in sensing and addressing general challenges faced by many types of sensors. Finally, we reflect on some of the challenges monolayer chemistry needs to address to facilitate further use of this powerful surface chemistry in commercial devices.
Keywords: continuous monitoring, DNA devices, electrochemical aptamer-based sensors, electrochemical biosensors, electrode functionalisation, molecular devices, molecular interfaces, self-assembled monolayers, single-molecule sensor.
References
1 Ulman A. Formation and structure of self-assembled monolayers. Chem Rev 1996; 96(4): 1533-54.
| Crossref | Google Scholar | PubMed |
2 Sagiv J. Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J Am Chem Soc 1980; 102(1): 92-8.
| Crossref | Google Scholar |
3 Nuzzo RG, Allara DL. Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 1983; 105(13): 4481-3.
| Crossref | Google Scholar |
4 Delamar M, Hitmi R, Pinson J, Saveant JM. Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J Am Chem Soc 1992; 114(14): 5883-4.
| Crossref | Google Scholar |
5 Linford MR, Chidsey CED. Alkyl monolayers covalently bonded to silicon surfaces. J Am Chem Soc 1993; 115(26): 12631-2.
| Crossref | Google Scholar |
6 Laibinis PE, Hickman JJ, Wrighton MS, Whitesides GM. Orthogonal self-assembled monolayers: alkanethiols on gold and alkane carboxylic acids on alumina. Science 1989; 245(4920): 845-7.
| Crossref | Google Scholar | PubMed |
7 Gardner TJ, Frisbie CD, Wrighton MS. Systems for orthogonal self-assembly of electroactive monolayers on Au and ITO: an approach to molecular electronics. J Am Chem Soc 1995; 117(26): 6927-33.
| Crossref | Google Scholar |
8 Allara DL, Nuzzo RG. Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface. Langmuir 1985; 1(1): 45-52.
| Crossref | Google Scholar |
10 Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 2005; 105(4): 1103-69.
| Crossref | Google Scholar | PubMed |
11 Smith RK, Lewis PA, Weiss PS. Patterning self-assembled monolayers. Prog Surf Sci 2004; 75(1): 1-68.
| Crossref | Google Scholar |
12 Wen K, Maoz R, Cohen H, Sagiv J, Gibaud A, Desert A, et al. Postassembly chemical modification of a highly ordered organosilane multilayer: new insights into the structure, bonding, and dynamics of self-assembling silane monolayers. ACS Nano 2008; 2(3): 579-99.
| Crossref | Google Scholar | PubMed |
13 Li M, Liu M, Qi F, Lin FR, Jen AK-Y. Self-assembled monolayers for interfacial engineering in solution-processed thin-film electronic devices: design, fabrication, and applications. Chem Rev 2024; 124(5): 2138-204.
| Crossref | Google Scholar | PubMed |
14 Casalini S, Bortolotti CA, Leonardi F, Biscarini F. Self-assembled monolayers in organic electronics. Chem Soc Rev 2017; 46(1): 40-71.
| Crossref | Google Scholar | PubMed |
15 Zeira A, Chowdhury D, Maoz R, Sagiv J. Contact electrochemical replication of hydrophilic−hydrophobic monolayer patterns. ACS Nano 2008; 2(12): 2554-68.
| Crossref | Google Scholar | PubMed |
16 Gooding JJ, Parker SG, Lu Y, Gaus K. Molecularly engineered surfaces for cell biology: from static to dynamic surfaces. Langmuir 2014; 30(12): 3290-302.
| Crossref | Google Scholar | PubMed |
17 Gooding JJ, Ciampi S. The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies. Chem Soc Rev 2011; 40(5): 2704-18.
| Crossref | Google Scholar | PubMed |
18 Cornell BA, Braach-Maksvytis VLB, King LG, Osman PDJ, Raguse B, Wieczorek L, et al. A biosensor that uses ion-channel switches. Nature 1997; 387(6633): 580-3.
| Crossref | Google Scholar | PubMed |
19 Finklea HO. Electrochemistry of organized monolayers of thiols and related molecules on electrodes. Electroanal Chem 1996; 19: 110-337.
| Google Scholar |
20 Darwish N, Paddon-Row MN, Gooding JJ. Surface-bound norbornylogous bridges as molecular rulers for investigating interfacial electrochemistry and as single molecule switches. Acc Chem Res 2014; 47(2): 385-95.
| Crossref | Google Scholar | PubMed |
21 Eggers PK, Darwish N, Paddon-Row MN, Gooding JJ. Surface-bound molecular rulers for probing the electrical double layer. J Am Chem Soc 2012; 134(17): 7539-44.
| Crossref | Google Scholar | PubMed |
22 Darwish N, Eggers PK, Ciampi S, Tong Y, Ye S, Paddon-Row MN, et al. Probing the effect of the solution environment around redox-active moieties using rigid anthraquinone-terminated molecular rulers. J Am Chem Soc 2012; 134(44): 18401-9.
| Crossref | Google Scholar | PubMed |
23 Vericat C, Vela ME, Salvarezza RC. Self-assembled monolayers of alkanethiols on Au(111): surface structures, defects and dynamics. Phys Chem Chem Phys 2005; 7(18): 3258-68.
| Crossref | Google Scholar | PubMed |
24 Siddiqui A-R, N’Diaye J, Santiago-Carboney A, Martin K, Bhargava R, Rodríguez-López J. Spectroelectrochemical determination of thiolate self-assembled monolayer adsorptive stability in aqueous and non-aqueous electrolytes. Analyst 2024; 149(10): 2842-54.
| Crossref | Google Scholar | PubMed |
25 Mearns FJ, Wong ELS, Short KT, Hibbert DB, Gooding JJ. DNA biosensor concepts based on a change in the DNA persistence length upon hybridization. Electroanalysis 2006; 18: 1971-81.
| Crossref | Google Scholar |
26 Gooding JJ. Advances in interfacial design for electrochemical biosensors and sensors: aryl diazonium salts for modifying carbon and metal electrodes. Electroanalysis 2008; 20(6): 573-82.
| Crossref | Google Scholar |
27 Liu G, Liu J, Böcking T, Eggers PK, Gooding JJ. The modification of glassy carbon and gold electrodes with aryl diazonium salt: the impact of the electrode materials on the rate of heterogeneous electron transfer. Chem Phys 2005; 319(1): 136-46.
| Crossref | Google Scholar |
28 Jiang C, Alam MT, Silva SM, Taufik S, Fan S, Gooding JJ. Unique sensing interface that allows the development of an electrochemical immunosensor for the detection of tumor necrosis factor α in whole blood. ACS Sens 2016; 1(12): 1432-8.
| Crossref | Google Scholar |
29 Yang W, Jaramillo D, Gooding JJ, Hibbert DB, Zhang R, Willett GD, et al. Sub-ppt detection limits for copper ions with Gly-Gly-His modified electrodes. Chem Commun 2001; 2001(19): 1982-1983.
| Crossref | Google Scholar | PubMed |
30 Collman JP, Devaraj NK, Eberspacher TPA, Chidsey CED. Mixed azide-terminated monolayers: a platform for modifying electrode surfaces. Langmuir 2006; 22(6): 2457-2464.
| Crossref | Google Scholar |
31 Ng CC, Magenau A, Ngalim SH, Ciampi S, Chockalingham M, Harper JB, et al. Using an electrical potential to reversibly switch surfaces between two states for dynamically controlling cell adhesion. Angew Chem Int Ed 2012; 51(31): 7706-10.
| Crossref | Google Scholar | PubMed |
32 Lian J, Tang W, Yang Y, Vaidyanathan R, Gonçales VR, Arman SY, et al. A transparent semiconducting surface for capturing and releasing single cells from a complex cell mixture. ACS Appl Mater Interfaces 2022; 14(16): 18079-86.
| Crossref | Google Scholar | PubMed |
33 Parker SG, Yang Y, Ciampi S, Gupta B, Kimpton K, Mansfeld FM, et al. A photoelectrochemical platform for the capture and release of rare single cells. Nat Commun 2018; 9(1): 2288.
| Crossref | Google Scholar | PubMed |
34 Hanson EL, Schwartz J, Nickel B, Koch N, Danisman MF. Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. J Am Chem Soc 2003; 125(51): 16074-80.
| Crossref | Google Scholar | PubMed |
35 Chockalingam M, Darwish N, Le Saux G, Gooding JJ. Importance of the indium tin oxide substrate on the quality of self-assembled monolayers formed from organophosphonic acids. Langmuir 2011; 27(6): 2545-52.
| Crossref | Google Scholar | PubMed |
36 Parviz M, Gaus K, Gooding JJ. Simultaneous impedance spectroscopy and fluorescence microscopy for the real-time monitoring of the response of cells to drugs. Chem Sci 2017; 8(3): 1831-40.
| Crossref | Google Scholar | PubMed |
37 Yang Y, Ma Y, Berengut JF, Lee LK, Tilley RD, Gaus K, et al. Electrochemically controlled blinking of fluorophores for quantitative STORM imaging. Nat Photon 2024; 18(7): 713-20.
| Crossref | Google Scholar |
38 Chen X, Luais E, Darwish N, Ciampi S, Thordarson P, Gooding JJ. Studies on the effect of solvents on self-assembled monolayers formed from organophosphonic acids on indium tin oxide. Langmuir 2012; 28(25): 9487-95.
| Crossref | Google Scholar | PubMed |
39 Senthilkumar M, Mathiyarasu J, Joseph J, Phani KLN, Yegnaraman V. Electrochemical instability of indium tin oxide (ITO) glass in acidic pH range during cathodic polarization. Mater Chem Phys 2008; 108(2): 403-7.
| Crossref | Google Scholar |
40 Crudden CM, Horton JH, Ebralidze II, Zenkina OV, McLean AB, Drevniok B, et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat Chem 2014; 6(5): 409-14.
| Crossref | Google Scholar | PubMed |
41 Badgurjar D, Huynh M, Masters B, Wuttig A. Non-covalent interactions mimic the covalent: an electrode-orthogonal self-assembled layer. J Am Chem Soc 2023; 145(32): 17734-45.
| Crossref | Google Scholar | PubMed |
42 Gooding JJ, Darwish N. The rise of self-assembled monolayers for fabricating electrochemical biosensors—an interfacial perspective. Chem Rec 2012; 12(1): 92-105.
| Crossref | Google Scholar | PubMed |
43 Ebrahimi D, Chow E, Gooding JJ, Hibbert DB. Multi-analyte sensing: a chemometrics approach to understanding the merits of electrode arrays versus single electrodes. Analyst 2008; 133(8): 1090-6.
| Crossref | Google Scholar | PubMed |
44 Chow E, Hibbert DB, Gooding JJ. Electrochemical detection of lead ions via the covalent attachment of human angiotensin I to mercaptopropionic acid and thioctic acid self-assembled monolayers. Anal Chim Acta 2005; 543(1): 167-76.
| Crossref | Google Scholar |
45 Liu G, Nguyen QT, Chow E, Böcking T, Hibbert DB, Gooding JJ. Study of factors affecting the performance of voltammetric copper sensors based on Gly-Gly-His modified glassy carbon and gold electrodes. Electroanalysis 2006; 18(12): 1141-51.
| Crossref | Google Scholar |
46 Wong ELS, Chow E, Gooding JJ. DNA recognition interfaces: the influence of interfacial design on the efficiency and kinetics of hybridization. Langmuir 2005; 21(15): 6957-65.
| Crossref | Google Scholar | PubMed |
47 Wong ELS, Gooding JJ. Charge transfer through DNA: A selective electrochemical DNA biosensor. Anal Chem 2006; 78(7): 2138-44.
| Crossref | Google Scholar | PubMed |
48 Wong ELS, Gooding JJ. Electronic detection of target nucleic acids by a 2,6-disulfonic acid anthraquinone intercalator. Anal Chem 2003; 75(15): 3845-52.
| Crossref | Google Scholar | PubMed |
49 Wong ELS, Gooding JJ. The electrochemical monitoring of the perturbation of charge transfer through DNA by cisplatin. J Am Chem Soc 2007; 129(29): 8950-1.
| Crossref | Google Scholar | PubMed |
50 Peterlinz KA, Georgiadis RM, Herne TM, Tarlov MJ. Observation of hybridization and dehybridization of thiol-tethered DNA using two-color surface plasmon resonance spectroscopy. J Am Chem Soc 1997; 119(14): 3401-2.
| Crossref | Google Scholar |
51 Herne TM, Tarlov MJ. Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc 1997; 119(38): 8916-20.
| Crossref | Google Scholar |
52 Levicky R, Herne TM, Tarlov MJ, Satija SK. Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study. J Am Chem Soc 1998; 120(38): 9787-92.
| Crossref | Google Scholar |
53 Ferguson BS, Hoggarth DA, Maliniak D, Ploense K, White RJ, Woodward N, et al. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci Transl Med 2013; 5(213): 213ra165.
| Crossref | Google Scholar | PubMed |
54 Arroyo-Currás N, Somerson J, Vieira PA, Ploense KL, Kippin TE, Plaxco KW. Real-time measurement of small molecules directly in awake, ambulatory animals. Proc Natl Acad Sci USA 2017; 114(4): 645-50.
| Crossref | Google Scholar | PubMed |
55 Lopez GP, Albers MW, Schreiber SL, Carroll R, Peralta E, Whitesides GM. Convenient methods for patterning the adhesion of mammalian cells to surfaces using self-assembled monolayers of alkanethiolates on gold. J Am Chem Soc 1993; 115(13): 5877-8.
| Crossref | Google Scholar |
56 Liu G, Paddon-Row MN, Gooding JJ. Protein modulation of electrochemical signals: application to immunobiosensing. Chem Commun 2008; 2008(33): 3870-3872.
| Crossref | Google Scholar | PubMed |
57 Shein JB, Lai LMH, Eggers PK, Paddon-Row MN, Gooding JJ. Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 2009; 25(18): 11121-8.
| Crossref | Google Scholar | PubMed |
58 Liu G, Iyengar SG, Gooding JJ. An amperometric immunosensor based on a gold nanoparticle-diazonium salt modified sensing interface for the detection of HbA1c in human blood. Electroanalysis 2013; 25(4): 881-7.
| Crossref | Google Scholar |
59 Sabaté del Río J, Henry OYF, Jolly P, Ingber DE. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat Nanotechnol 2019; 14(12): 1143-9.
| Crossref | Google Scholar | PubMed |
60 Lee J-C, Kim SY, Song J, Jang H, Kim M, Kim H, et al. Micrometer-thick and porous nanocomposite coating for electrochemical sensors with exceptional antifouling and electroconducting properties. Nat Commun 2024; 15(1): 711.
| Crossref | Google Scholar | PubMed |
61 Gui AL, Luais E, Peterson JR, Gooding JJ. Zwitterionic phenyl layers: finally, stable, anti-biofouling coatings that do not passivate electrodes. ACS Appl Mater Interfaces 2013; 5(11): 4827-35.
| Crossref | Google Scholar | PubMed |
62 Wayner DDM, Wolkow RA. Organic modification of hydrogen terminated silicon surfaces. J Chem Soc, Perkin Trans 2 2002; 2002(1): 23-34.
| Crossref | Google Scholar |
63 Yu J, Losic D, Marshall M, Böcking T, Gooding JJ, Shapter JG. Preparation and characterisation of an aligned carbon nanotube array on the silicon(100) surface. Soft Matter 2006; 2(12): 1081-8.
| Crossref | Google Scholar | PubMed |
64 Ciampi S, Böcking T, Kilian KA, James M, Harper JB, Gooding JJ. Functionalization of acetylene-terminated monolayers on Si(100) surfaces: a click chemistry approach. Langmuir 2007; 23(18): 9320-9.
| Crossref | Google Scholar | PubMed |
65 Ciampi S, Eggers PK, Le Saux G, James M, Harper JB, Gooding JJ. Silicon(100) electrodes resistant to oxidation in aqueous solutions: an unexpected benefit of surface acetylene moieties. Langmuir 2009; 25(4): 2530-9.
| Crossref | Google Scholar | PubMed |
66 Choudhury MH, Ciampi S, Yang Y, Tavallaie R, Zhu Y, Zarei L, et al. Connecting electrodes with light: one wire, many electrodes. Chem Sci 2015; 6(12): 6769-76.
| Crossref | Google Scholar | PubMed |
67 Gautam S, Gonçales VR, Colombo RNP, Tang W, Córdoba de Torresi SI, Reece PJ, et al. High-resolution light-activated electrochemistry on amorphous silicon-based photoelectrodes. Chem Commun 2020; 56(54): 7435-8.
| Crossref | Google Scholar | PubMed |
68 Vogel YB, Gonçales VR, Al-Obaidi L, Gooding JJ, Darwish N, Ciampi S. Nanocrystal inks: photoelectrochemical printing of Cu2O nanocrystals on silicon with 2D control on polyhedral shapes. Adv Funct Mater 2018; 28(51): 1804791.
| Crossref | Google Scholar |
69 Ciampi S, James M, Le Saux G, Gaus K, Justin Gooding J. Electrochemical ‘switching’ of Si(100) modular assemblies. J Am Chem Soc 2012; 134(2): 844-7.
| Crossref | Google Scholar | PubMed |
70 Gooding JJ, Gaus K. Single-molecule sensors: challenges and opportunities for quantitative analysis. Angew Chem Int Ed Engl 2016; 55(38): 11354-66.
| Crossref | Google Scholar | PubMed |
71 Moraes Silva S, Tavallaie R, Sandiford L, Tilley RD, Gooding JJ. Gold-coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications. Chem Commun 2016; 52(48): 7528-40.
| Crossref | Google Scholar | PubMed |
72 Goon IY, Lai LM, Lim M, Amal R, Gooding JJ. ‘Dispersible electrodes’: a solution to slow response times of sensitive sensors. Chem Commun 2010; 46(46): 8821-3.
| Crossref | Google Scholar | PubMed |
73 Tavallaie R, McCarroll J, Le Grand M, Ariotti N, Schuhmann W, Bakker E, et al. Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nat Nanotechnol 2018; 13(11): 1066-71.
| Crossref | Google Scholar | PubMed |
74 Utama RH, Atapattu L, O’Mahony AP, Fife CM, Baek J, Allard T, et al. A 3D bioprinter specifically designed for the high-throughput production of matrix-embedded multicellular spheroids. iScience 2020; 23(10): 101621.
| Crossref | Google Scholar | PubMed |
75 Le Saux G, Magenau A, Gunaratnam K, Kilian KA, Böcking T, Gooding JJ, et al. Spacing of integrin ligands influences signal transduction in endothelial cells. Biophys J 2011; 101(4): 764-73.
| Crossref | Google Scholar | PubMed |
76 Le Saux G, Magenau A, Böcking T, Gaus K, Gooding JJ. The relative importance of topography and RGD ligand density for endothelial cell adhesion. PLoS One 2011; 6(7): e21869.
| Crossref | Google Scholar | PubMed |
77 Utama RH, Tan VTG, Tjandra KC, Sexton A, Nguyen DHT, O’Mahony AP, et al. A covalently crosslinked ink for multimaterials drop-on-demand 3D bioprinting of 3D cell cultures. Macromol Biosci 2021; 21(9): e2100125.
| Crossref | Google Scholar | PubMed |
78 Arroyo-Currás N. Beyond the gold–thiol paradigm: exploring alternative interfaces for electrochemical nucleic acid-based sensing. ACS Sens 2024; 9(5): 2228-36.
| Crossref | Google Scholar | PubMed |
79 Downs AM, Plaxco KW. Real-time, in vivo molecular monitoring using electrochemical aptamer based sensors: opportunities and challenges. ACS Sens 2022; 7(10): 2823-32.
| Crossref | Google Scholar | PubMed |