Synthesis and antibacterial activity of 6″-decanesulfonylacetamide-functionalised amphiphilic derivatives of amikacin and kanamycin
Dylan C. Farr A , Lendl Tan B , Juanelle Furness B , I. Darren Grice A C , Nicholas P. West B and Todd A. Houston A *A
B
C
Abstract
Aminoglycoside antibiotics represent the first class of successful drugs in the treatment of tuberculosis; however, mycobacteria and other bacterial species possess several drug resistance mechanisms to inactivate these natural products. In the past 15 years, a variety of amphiphilic aminoglycosides have been shown to have improved activity against infectious microorganisms and to subvert resistance mechanisms. Here, we report on four novel synthetic compounds derived from two existing potent antitubercular compounds and describe their activity against both Mycobacterium tuberculosis and Staphylococcus aureus. It was found that a decanesulfonylacetamide-based conjugate of amikacin displayed promising preliminary antitubercular activities, warranting further investigation to assess the therapeutic potential of these unique antimicrobials.
Keywords: amide–triazole conjugates, amikacin, amphiphilic aminoglycosides, antibiotics, antimicrobial agents, kanamycin, Mycobacterium tuberculosis, n-decanesulfonylacetamide.
References
1 Kawaguchi H, Naito T, Nakagawa S, Fujisawa K. BB-K8, a new semisynthetic aminoglycoside antibiotic. J Antibiot 1972; 25(12): 695-708.
| Crossref | Google Scholar | PubMed |
2 Bera S, Zhanel GG, Schweizer F. Antibacterial activities of aminoglycoside antibiotics-derived cationic amphiphiles. Polyol-modified neomycin B-, kanamycin A-, amikacin-, and neamine-based amphiphiles with potent broad spectrum antibacterial activity. J Med Chem 2010; 53(9): 3626-3631.
| Crossref | Google Scholar | PubMed |
4 Zhang J, Chiang F-I, Wu L, Czyryca PG, Li D, Chang C-WT. Surprising alteration of antibacterial activity of 5′′-modified neomycin against resistant bacteria. J Med Chem 2008; 51(23): 7563-7573.
| Crossref | Google Scholar | PubMed |
5 Dezanet C, Kempf J, Mingeot-Leclercq M-P, Décout J-L. Amphiphilic aminoglycosides as medicinal agents. Int J Mol Sci 2020; 21(19): 7411.
| Crossref | Google Scholar | PubMed |
6 François B, Russell RJ, Murray JB, Aboul-ela F, Masquida B, Vicens Q, Westhof E. Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Res 2005; 33(17): 5677-5690.
| Crossref | Google Scholar | PubMed |
7 Baussanne I, Bussière A, Halder S, Ganem-Elbaz C, Ouberai M, Riou M, Paris J-M, Ennifar E, Mingeot-Leclercq M-P, Décout J-L. Synthesis and antimicrobial evaluation of amphiphilic neamine derivatives. J Med Chem 2010; 53(1): 119-127.
| Crossref | Google Scholar | PubMed |
8 Sautrey G, Zimmermann L, Deleu M, Delbar A, Machado LS, Jeannot K, Van Bambeke F, Buyck JM, Decout J-L, Mingeot-Leclercq M-P. New amphiphilic neamine derivatives active against resistant Pseudomonas aeruginosa and their interactions with lipopolysaccharides. Antimicrob Agents Chemother 2014; 58(8): 4420-4430.
| Crossref | Google Scholar | PubMed |
9 Ouberai M, El Garch F, Bussiere A, Riou M, Alsteens D, Lins L, Baussanne I, Dufrêne YF, Brasseur R, Decout J-L, Mingeot-Leclercq MP. The Pseudomonas aeruginosa membranes: a target for a new amphiphilic aminoglycoside derivative? Biochim Biophys Acta 2011; 1808(6): 1716-1727.
| Crossref | Google Scholar | PubMed |
10 Udumula V, Ham YW, Fosso MY, Chan KY, Rai R, Zhang J, Li J, Chang C-WT. Investigation of antibacterial mode of action for traditional and amphiphilic aminoglycosides. Bioorg Med Chem Lett 2013; 23(6): 1671-1675.
| Crossref | Google Scholar | PubMed |
11 Hancock RE. Peptide antibiotics. Lancet 1997; 349(9049): 418-422.
| Crossref | Google Scholar | PubMed |
12 Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers 2002; 66(4): 236-248.
| Crossref | Google Scholar | PubMed |
13 Lazaridis T, He Y, Prieto L. Membrane interactions and pore formation by the antimicrobial peptide protegrin. Biophys J 2013; 104(3): 633-642.
| Crossref | Google Scholar | PubMed |
14 Guchhait G, Altieri A, Gorityala B, Yang X, Findlay B, Zhanel GG, Mookherjee N, Schweizer F. Amphiphilic tobramycins with immunomodulatory properties. Angew Chem Int Ed Engl 2015; 54(21): 6278-6282.
| Crossref | Google Scholar | PubMed |
15 Jones PB, Parrish NM, Houston TA, Stapon A, Bansal NP, Dick JD, Townsend CA. A new class of antituberculosis agents. J Med Chem 2000; 43(17): 3304-3314.
| Crossref | Google Scholar | PubMed |
16 Parrish NM, Houston T, Jones PB, Townsend C, Dick JD. In vitro activity of a novel antimycobacterial compound, N-octanesulfonylacetamide, and its effects on lipid and mycolic acid synthesis. Antimicrob Agents Chemother 2001; 45(4): 1143-1150.
| Crossref | Google Scholar | PubMed |
17 Parrish NM, Ko CG, Hughes MA, Townsend CA, Dick JD. Effect of n-octanesulphonylacetamide (OSA) on ATP and protein expression in Mycobacterium bovis BCG. J Antimicrob Chemother 2004; 54(4): 722-729.
| Crossref | Google Scholar | PubMed |
18 Sun H-K, Pang A, Farr DC, Mosaiab T, Britton WJ, Anoopkumar-Dukie S, Grice ID, Kiefel MJ, West NP, Grant GD, Houston TA. Thioamide derivative of the potent antitubercular 2-(decylsulfonyl) acetamide is less active against Mycobacterium tuberculosis, but a more potent antistaphylococcal agent. Aust J Chem 2018; 71(9): 716-719.
| Crossref | Google Scholar |
19 Quader S, Boyd SE, Jenkins ID, Houston TA. Multisite modification of neomycin B: combined Mitsunobu and click chemistry approach. J Org Chem 2007; 72(6): 1962-1979.
| Crossref | Google Scholar | PubMed |
20 Herzog IM, Feldman M, Eldar-Boock A, Satchi-Fainaro R, Fridman M. Design of membrane targeting tobramycin-based cationic amphiphiles with reduced hemolytic activity. MedChemComm 2013; 4(1): 120-124.
| Crossref | Google Scholar |
21 Dhondikubeer R, Bera S, Zhanel GG, Schweizer F. Antibacterial activity of amphiphilic tobramycin. J Antibiot 2012; 65(10): 495-498.
| Crossref | Google Scholar | PubMed |
22 Mingeot-Leclercq M-P, Décout J-L. Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. MedChemComm 2016; 7(4): 586-611.
| Crossref | Google Scholar |
23 Benhamou RI, Shaul P, Herzog IM, Fridman M. Di‐N‐methylation of anti‐Gram‐positive aminoglycoside‐derived membrane disruptors improves antimicrobial potency and broadens spectrum to Gram‐negative bacteria. Angew Chem 2015; 127(46): 13821-13825.
| Crossref | Google Scholar |
24 Berkov-Zrihen Y, Herzog IM, Benhamou RI, Feldman M, Steinbuch KB, Shaul P, Lerer S, Eldar A, Fridman M. Tobramycin and nebramine as pseudo‐oligosaccharide scaffolds for the development of antimicrobial cationic amphiphiles. Chem Eur J 2015; 21(11): 4340-4349.
| Crossref | Google Scholar | PubMed |
25 Zhang Q, Alfindee MN, Shrestha JP, Nziko VdPN, Kawasaki Y, Peng X, Takemoto JY, Chang C-WT. Divergent synthesis of three classes of antifungal amphiphilic kanamycin derivatives. J Org Chem 2016; 81(22): 10651-10663.
| Crossref | Google Scholar | PubMed |
26 Berkov-Zrihen Y, Herzog IM, Feldman M, Fridman M. Site-selective displacement of tobramycin hydroxyls for preparation of antimicrobial cationic amphiphiles. Org Lett 2013; 15(24): 6144-6147.
| Crossref | Google Scholar | PubMed |
27 Fosso MY, Shrestha SK, Green KD, Garneau-Tsodikova S. Synthesis and bioactivities of kanamycin B-derived cationic amphiphiles. J Med Chem 2015; 58(23): 9124-9132.
| Crossref | Google Scholar | PubMed |
28 Fosso MY, Zhu H, Green KD, Garneau-Tsodikova S, Fredrick K. Tobramycin variants with enhanced ribosome‐targeting activity. ChemBioChem 2015; 16(11): 1565-1570.
| Crossref | Google Scholar | PubMed |
29 Thamban Chandrika N, Green KD, Houghton JL, Garneau-Tsodikova S. Synthesis and biological activity of mono-and di-N-acylated aminoglycosides. ACS Med Chem Lett 2015; 6(11): 1134-1139.
| Crossref | Google Scholar | PubMed |
30 Herzog IM, Green KD, Berkov‐Zrihen Y, Feldman M, Vidavski RR, Eldar‐Boock A, Satchi‐Fainaro R, Eldar A, Garneau‐Tsodikova S, Fridman M. 6′′‐Thioether tobramycin analogues: towards selective targeting of bacterial membranes. Angew Chem 2012; 124(23): 5750-5754.
| Crossref | Google Scholar |
31 Chen W, Biswas T, Porter VR, Tsodikov OV, Garneau-Tsodikova S. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proc Natl Acad Sci 2011; 108(24): 9804-9808.
| Crossref | Google Scholar | PubMed |
32 Green KD, Chen W, Garneau-Tsodikova S. Identification and characterization of inhibitors of the aminoglycoside resistance acetyltransferase Eis from Mycobacterium tuberculosis. ChemMedChem 2012; 7(1): 73-77.
| Crossref | Google Scholar | PubMed |
33 Zaunbrecher MA, Sikes RD, Metchock B, Shinnick TM, Posey JE. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase Eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci 2009; 106(47): 20004-20009.
| Crossref | Google Scholar | PubMed |