Exploring colorimetric detection of perfluorooctane sulfonate using micelle solubilised porphyrin
Chloe M. Taylor A , Michael C. Breadmore A B and Nathan L. Kilah A *A School of Natural Sciences – Chemistry, College of Science and Engineering, University of Tasmania, Hobart, Tas., Australia.
B Australian Centre for Research on Separation Science, School of Natural Sciences – Chemistry, College of Science and Engineering, University of Tasmania, Hobart, Tas., Australia.
Australian Journal of Chemistry - https://doi.org/10.1071/CH23061
Submitted: 27 March 2023 Accepted: 11 June 2023 Published online: 14 July 2023
Abstract
The harmful pollutant perfluorooctane sulfonate (PFOS) is difficult to detect without extensive laboratory equipment used by trained personnel. Herein, we report the use of a micelle-encapsulated porphyrin host molecule as a rapid colorimetric indicator for PFOS and its anionic salts. A range of common commercially available surfactants were tested and optimised to encapsulate the hydrophobic highly pigmented porphyrin sensor molecule. This method was used for the detection of PFOS in aqueous solutions at concentrations as low as 3 ppm. Colour space RGB information was extracted from a mobile phone photograph and parameterised, allowing for threshold PFOS detection, demonstrating the applicability of this method as an easily accessible approach to inform an untrained user.
Keywords: colorimetric, detection, micelle, PFAS, pollutant, porphyrin, sensor, supramolecular.
References
1 Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts 2020; 22(12): 2345-73.
| Crossref | Google Scholar |
2 Nakayama SF, Yoshikane M, Onoda Y, Nishihama Y, Iwai-Shimada M, Takagi M, et al. Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment. Trends Analyt Chem 2019; 121: 115410.
| Crossref | Google Scholar |
3 Pérez F, Nadal M, Navarro-Ortega A, Fàbrega F, Domingo JL, Barceló D, et al. Accumulation of perfluoroalkyl substances in human tissues. Environ Int 2013; 59: 354-62.
| Crossref | Google Scholar |
4 Brusseau ML, Van Glubt S. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces. Water Res 2019; 161: 17-26.
| Crossref | Google Scholar |
5 Brusseau ML. Examining the robustness and concentration dependency of PFAS air-water and NAPL-water interfacial adsorption coefficients. Water Res 2021; 190: 116778.
| Crossref | Google Scholar |
6 Lyu X, Xiao F, Shen C, Chen J, Park CM, Sun Y, et al. Per- and Polyfluoroalkyl Substances (PFAS) in Subsurface Environments: Occurrence, Fate, Transport, and Research Prospect. Rev Geophys 2022; 60(3): e2021RG000765.
| Crossref | Google Scholar |
7 Brusseau ML. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. Sci Total Environ 2018; 613-614: 176-85.
| Crossref | Google Scholar |
8 Lyu Y, Brusseau ML, Chen W, Yan N, Fu X, Lin X. Adsorption of PFOA at the Air–Water Interface during Transport in Unsaturated Porous Media. Environ Sci Technol 2018; 52(14): 7745-53.
| Crossref | Google Scholar |
9 Shinoda K, Hato M, Hayashi T. Physicochemical Properties of Aqueous-Solutions of Fluorinated Surfactants. J Phys Chem 1972; 76(6): 909-14.
| Crossref | Google Scholar |
10 Wang Z, DeWitt JC, Higgins CP, Cousins IT. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environ Sci Technol 2017; 51(5): 2508-18.
| Crossref | Google Scholar |
11 Sznajder-Katarzyńska K, Surma M, Cieślik I. A Review of Perfluoroalkyl Acids (PFAAs) in terms of Sources, Applications, Human Exposure, Dietary Intake, Toxicity, Legal Regulation, and Methods of Determination. J Chem 2019; 2019: 2717528.
| Crossref | Google Scholar |
12 NHMRC, NRMMC. Australian Drinking Water Guidelines 6, National Water Quality Management Strategy, updated 2022. Canberra, ACT: Australia National Health and Medical Research Council, National Resource Management Ministerial Council; 2011. Available at https://www.nhmrc.gov.au/about-us/publications/australian-drinking-water-guidelines
13 Brusseau ML, Anderson RH, Guo B. PFAS concentrations in soils: background levels versus contaminated sites. Sci Total Environ 2020; 740: 140017.
| Crossref | Google Scholar |
14 Rodriguez KL, Hwang JH, Esfahani AR, Sadmani AHMA, Lee WH. Recent Developments of PFAS-Detecting Sensors and Future Direction: A Review. Micromachines 2020; 11(7): 667.
| Crossref | Google Scholar |
15 Caroleo F, Magna G, Naitana ML, Di Zazzo L, Martini R, Pizzoli F, et al. Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. Sensors 2022; 22(7): 2649.
| Crossref | Google Scholar |
16 Fang C, Zhang X, Dong Z, Wang L, Megharaj M, Naidu R. Smartphone app-based/portable sensor for the detection of fluoro-surfactant PFOA. Chemosphere 2018; 191: 381-8.
| Crossref | Google Scholar |
18 Liang J, Deng X, Tan K. An eosin Y-based “turn-on” fluorescent sensor for detection of perfluorooctane sulfonate. Spectrochim Acta A Mol Biomol Spectrosc 2015; 150: 772-7.
| Crossref | Google Scholar |
19 Menger RF, Beck JJ, Borch T, Henry CS. Colorimetric Paper-Based Analytical Device for Perfluorooctanesulfonate Detection. ACS EST Water 2022; 2(4): 565-72.
| Crossref | Google Scholar |
20 Coll C, Martínez-Máñez R, Marcos MD, Sancenón F, Soto J. A simple approach for the selective and sensitive colorimetric detection of anionic surfactants in water. Angew Chem Int Ed Engl 2007; 46(10): 1675-8.
| Crossref | Google Scholar |
21 Wyrwas B, Zgoła-Grześkowiak A. Continuous Flow Methylene Blue Active Substances Method for the Determination of Anionic Surfactants in River Water and Biodegradation Test Samples. J Surfactants Deterg 2014; 17(1): 191-8.
| Crossref | Google Scholar |
22 Taylor CM, Ellingsen TA, Breadmore MC, Kilah NL. Porphyrin-based colorimetric sensing of perfluorooctanoic acid as proof of concept for perfluoroalkyl substance detection. Chem Commun 2021; 57(88): 11649-52.
| Crossref | Google Scholar |
23 Taylor CM, Breadmore MC, Kilah NL. Colorimetric Determination of Perfluorocarboxylic Acids using Porphyrin Hosts and Mobile Phone Photographs. Sens Diagn 2023; 2: 676-86.
| Crossref | Google Scholar |
24 López-Fontán JL, Sarmiento F, Schulz PC. The aggregation of sodium perfluorooctanoate in water. Colloid Polym Sci 2004; 283(8): 862-71.
| Crossref | Google Scholar |
25 Paria S, Maity P, Siddiqui R, Patra R, Maity SB, Jana A. Nanostructured Luminescent Micelles: Efficient Functional Materials for Sensing Nitroaromatic and Nitramine Explosives. Photochem 2022; 2(1): 32-57.
| Crossref | Google Scholar |
26 Halder A, Singh S, Adhikari A, Singh P, Sarkar PK, Pal U, et al. Selective and Fast Responsive Sensitized Micelle for Detection of Fluoride Level in Drinking Water. ACS Sustain Chem Eng 2019; 7(19): 16355-63.
| Crossref | Google Scholar |
27 Hubbard LR, Allen CJ, Sims AC, Engbrecht KM, O’Hara MJ, Johnson JC, et al. Detection of SARS-COV-2 by functionally imprinted micelles. MRS Commun 2022; 12(6): 1160-7.
| Crossref | Google Scholar |
28 Dave N, Joshi T. A Concise Review on Surfactants and Its Significance. Int J Appl Chem 2017; 13: 663-72.
| Crossref | Google Scholar |
29 Behari M, Das D, Mohanty AM. Influence of Surfactant for Stabilization and Pipeline Transportation of Iron Ore Water Slurry: A Review. ACS Omega 2022; 7(33): 28708-22.
| Crossref | Google Scholar |
30 Su F, Alam R, Mei Q, Tian Y, Youngbull C, Johnson RH, et al. Nanostructured Oxygen Sensor - Using Micelles to Incorporate a Hydrophobic Platinum Porphyrin. PLoS One 2012; 7(3): e33390.
| Crossref | Google Scholar |
31 Giovannetti R, Alibabaei L, Petetta L. Aggregation behaviour of a tetracarboxylic porphyrin in aqueous solution. J Photochem Photobiol A Chem 2010; 211(2): 108-14.
| Crossref | Google Scholar |
32 Zannotti M, Giovannetti R, Minofar B, Řeha D, Plačková L, D’Amato CA, et al. Aggregation and metal-complexation behaviour of THPP porphyrin in ethanol/water solutions as function of pH. Spectrochim Acta A Mol Biomol Spectrosc 2018; 193: 235-48.
| Crossref | Google Scholar |
33 Lin J-C, Hu C-Y, Lo S-L. Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment. Ultrason Sonochem 2016; 28: 130-5.
| Crossref | Google Scholar |
34 Cifuentes A, Bernal JL, Diez-Masa JC. Determination of Critical Micelle Concentration Values Using Capillary Electrophoresis Instrumentation. Anal Chem 1997; 69(20): 4271-4.
| Crossref | Google Scholar |
35 Haque ME, Das AR, Moulik SP. Behaviors of sodium deoxycholate (NaDC) and polyoxyethylene tert-octylphenyl ether (Triton X-100) at the air/water interface and in the bulk. J Phys Chem 1995; 99(38): 14032-8.
| Crossref | Google Scholar |
36 Szymczyk K, Taraba A. Aggregation behavior of Triton X-114 and Tween 80 at various temperatures and concentrations studied by density and viscosity measurements. J Therm Anal Calorim 2016; 126(1): 315-26.
| Crossref | Google Scholar |
37 González L, Deive FJ, Rodríguez A, Longo MA, Álvarez MS. Salting out Tergitol 15S-based surfactants for extremolipases separation. J Mol Liq 2022; 353: 118736.
| Crossref | Google Scholar |
38 Hait SK, Moulik SP. Determination of critical micelle concentration (CMC) of nonionic surfactants by donor-acceptor interaction with iodine and correlation of CMC with hydrophile-lipophile balance and other parameters of the surfactants. J Surfactants Deterg 2001; 4(3): 303-9.
| Crossref | Google Scholar |
39 Al-Koofee D. Effect of Temperature Changes on Critical Micelle Concentration for Tween Series Surfactant. Glob J Sci 2013; 13: 1-7.
| Google Scholar |
40 Santiago PS, Neto DdS, Gandini SCM, Tabak M. On the localization of water-soluble porphyrins in micellar systems evaluated by static and time-resolved frequency-domain fluorescence techniques. Colloids Surf B Biointerfaces 2008; 65(2): 247-56.
| Crossref | Google Scholar |
41 Tehrani-Bagha AR, Holmberg K. Solubilization of Hydrophobic Dyes in Surfactant Solutions. Materials 2013; 6(2): 580-608.
| Crossref | Google Scholar |
42 Yushmanov VE. Aggregation of Fe(III)TPPS4 on Biological Structures Is pH-Dependent, Suggesting Oxo-Bridging in the Aggregates. Inorg Chem 1999; 38(8): 1713-8.
| Crossref | Google Scholar |
43 Wang Y, Thies-Weesie DME, Bosman EDC, van Steenbergen MJ, van den Dikkenberg J, Shi Y, et al. Tuning the size of all-HPMA polymeric micelles fabricated by solvent extraction. J Control Release 2022; 343: 338-46.
| Crossref | Google Scholar |
44 Guo L, Liang Y-q. UV–visible and fluorescence spectral study on a pH controlled transfer process of an amphiphilic porphyrin in nonionic micelle. Spectrochim Acta A Mol Biomol Spectrosc 2003; 59(2): 219-27.
| Crossref | Google Scholar |
45 Vermathen M, Louie EA, Chodosh AB, Ried S, Simonis U. Interactions of Water-Insoluble Tetraphenylporphyrins with Micelles Probed by UV−Visible and NMR Spectroscopy. Langmuir 2000; 16(1): 210-21.
| Crossref | Google Scholar |
46 Li X, Zhang L, Mu J. Formation of new types of porphyrin H- and J-aggregates. Colloids Surf A Physicochem Eng Asp 2007; 311: 187-90.
| Crossref | Google Scholar |
47 Maiti NC, Mazumdar S, Periasamy N. J- and H-Aggregates of Porphyrin−Surfactant Complexes: Time-Resolved Fluorescence and Other Spectroscopic Studies. J Phys Chem B 1998; 102(9): 1528-38.
| Crossref | Google Scholar |
48 Wang R, Qu R, Jing C, Zhai Y, An Y, Shi L. Zinc porphyrin/fullerene/block copolymer micelle for enhanced electron transfer ability and stability. RSC Adv 2017; 7(17): 10100-7.
| Crossref | Google Scholar |
49 Hassanpour A, Azani M-R, Bordbar A-K. Solution properties of sodium n-dodecyl sulfate in the presence of meso-tetrakis(N-methylpyridinium-4-yl) porphyrin. J Korean Chem Soc 2011; 55(3): 335-40.
| Crossref | Google Scholar |
50 Weyandt E, Leanza L, Capelli R, Pavan GM, Vantomme G, Meijer EW. Controlling the length of porphyrin supramolecular polymers via coupled equilibria and dilution-induced supramolecular polymerization. Nat Commun 2022; 13(1): 248.
| Crossref | Google Scholar |
51 Dokic J, Pacherie É. Shades and Concepts. Analysis 2001; 61(3): 193-202.
| Crossref | Google Scholar |
52 Togashi DM, Costa SMB, Sobral AJFN. Self-Aggregation of Lipophilic Porphyrins in Reverse Micelles of Aerosol OT. J Phys Chem B 2004; 108(31): 11344-56.
| Crossref | Google Scholar |
53 Cui X, Mao S, Liu M, Yuan H, Du Y. Mechanism of Surfactant Micelle Formation. Langmuir 2008; 24(19): 10771-5.
| Crossref | Google Scholar |
54 Denkova PS, Lokeren LV, Verbruggen I, Willem R. Self-Aggregation and Supramolecular Structure Investigations of Triton X-100 and SDP2S by NOESY and Diffusion Ordered NMR Spectroscopy. J Phys Chem B 2008; 112(35): 10935-41.
| Crossref | Google Scholar |
55 Šafranko S, Živković P, Stanković A, Medvidović-Kosanović M, Széchenyi A, Jokić S. Designing ColorX, Image Processing Software for Colorimetric Determination of Concentration, To Facilitate Students’ Investigation of Analytical Chemistry Concepts Using Digital Imaging Technology. J Chem Educ 2019; 96(9): 1928-37.
| Crossref | Google Scholar |
56 Gallagher SR. Digital Image Processing and Analysis with ImageJ. Curr Protoc Essent Lab Tech 2014; 9(1): A.3C.1-29.
| Crossref | Google Scholar |
57 Phuangsaijai N, Jakmunee J, Kittiwachana S. Investigation into the predictive performance of colorimetric sensor strips using RGB, CMYK, HSV, and CIELAB coupled with various data preprocessing methods: a case study on an analysis of water quality parameters. J Anal Sci Technol 2021; 12(1): 19.
| Crossref | Google Scholar |
59 Xiaowei H, Xiaobo Z, Jiewen Z, Jiyong S, Zhihua L, Tingting S. Monitoring the biogenic amines in Chinese traditional salted pork in jelly (Yao-meat) by colorimetric sensor array based on nine natural pigments. Int J Food Sci Technol 2015; 50(1): 203-9.
| Crossref | Google Scholar |
60 Tahir HE, Xiaobo Z, Xiaowei H, Jiyong S, Mariod AA. Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques. Food Chem 2016; 206: 37-43.
| Crossref | Google Scholar |
61 Witzel RF, Burnham RW, Onley JW. Threshold and suprathreshold perceptual color differences. J Opt Soc Am 1973; 63(5): 615-25.
| Crossref | Google Scholar |
62 Sharma G, Wu W, Dalal EN. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res Appl 2005; 30(1): 21-30.
| Crossref | Google Scholar |
63 Safarik I, Baldikova E, Prochazkova J, Pospiskova K. Smartphone-based image analysis for evaluation of magnetic textile solid phase extraction of colored compounds. Heliyon 2019; 5(12): e02995.
| Crossref | Google Scholar |
64 Cao Y, Lee C, Davis ETJ, Si W, Wang F, Trimpin S, et al. 1000-Fold Preconcentration of Per- and Polyfluorinated Alkyl Substances within 10 minutes via Electrochemical Aerosol Formation. Anal Chem 2019; 91: 14352-8.
| Crossref | Google Scholar |
65 Poboży E, Król E, Wójcik L, Wachowicz M, Trojanowicz M. HPLC determination of perfluorinated carboxylic acids with fluorescence detection. Mikrochim Acta 2011; 172(3–4): 409-17.
| Crossref | Google Scholar |
66 Menesatti P, Angelini C, Pallottino F, Antonucci F, Aguzzi J, Costa C. RGB Color Calibration for Quantitative Image Analysis: The “3D Thin-Plate Spline” Warping Approach. Sensors 2012; 12: 7063-79.
| Crossref | Google Scholar |