Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Solubility of carbon dioxide in some imidazolium and pyridinium-based ionic liquids and correlation with NRTL model

Narmin Noorani https://orcid.org/0000-0002-8156-2018 A * and Abbas Mehrdad A
+ Author Affiliations
- Author Affiliations

A Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.

* Correspondence to: nnorani1@yahoo.com

Handling Editor: Jenny Pringle

Australian Journal of Chemistry 75(5) 353-361 https://doi.org/10.1071/CH21302
Submitted: 27 November 2021  Accepted: 8 April 2022   Published: 24 May 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

In this study, the solubility of carbon dioxide gas in a series of 1-alkyl-4-methyl pyridinium and 1-alkyl-3-methylimidazolium-based ionic liquids with various anions, viz. thiocyanate ([SCN]), chloride ([Cl]) and bromide ([Br]) was investigated using a quartz crystal microbalance at 298.15 K and pressures up to 0.4 MPa. CO2 solubility in the ionic liquids correlates well with the non-random two-liquid (NRTL) model. The results indicate that the cation alkyl chain length and the type of anion have the main effects on the solubility of carbon dioxide in ionic liquids. CO2 solubility in both 1-alkyl-4-methyl pyridinium and 1-alkyl-3-methylimidazolium-based ionic liquids increased with increasing alkyl chain length of the cation. Also, CO2 solubility was strongly dependent on the selection of the anion. CO2 solubility in both 1-alkyl-4-methyl pyridinium and 1-alkyl-3-methylimidazolium-based ionic liquids increased as follows: [SCN] > [Cl] > [Br].

Keywords: carbon dioxide, gas solubility, Henry’s law constant, imidazolium, ionic liquids, NRTL model, pyridinium, thermodynamics.


References

[1]  C Wang, X Zhu, C Gui, D Jiang, D Deng, H Li, S Dai,, RSC Adv 2013, 3, 15518.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  JM Matter, M Stute, SO Snæbjörnsdottir, EH Oelkers, SR Gislason, ES Aradottir, B Sigfusson, I Gunnarsson, H Sigurdardottir, E Gunnlaugsson, G Axelsson, HA Alfredsson, D Wolff-Boenisch, K Mesfin, D Fernandez de la Reguera Taya, J Hall, K Dideriksen, WS Broecker, Science 2016, 352, 1312.
         | Crossref | GoogleScholarGoogle Scholar | 27284192PubMed |

[3]  X Zhang, X Zhang, H Dong, Z Zhao, S Zhang, Y Huang, Energy Environ Sci 2012, 5, 6668.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  MJ Earle, J Esperança, MA Gilea, JNC Lopes, LPN Rebelo, JW Magee, KR Seddon, JA Widegren, Nature 2006, 439, 831.
         | Crossref | GoogleScholarGoogle Scholar | 16482154PubMed |

[5]  B Li, Y Chen, X Zh. Yang, X Ji, Lu, Sep Purif Technol 2019, 214, 128.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  P Li, KP Pramoda, TS Chung, Ind Eng Chem Res 2011, 50, 9344.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  GT Rochelle, Science 2009, 325, 1652.
         | Crossref | GoogleScholarGoogle Scholar | 19779188PubMed |

[8]  LA Blanchard, Z Gu, JF Brennecke, J Phys Chem B 2001, 105, 2437.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  B Yu, B Zoua, ChW Hua, JCO₂ Util 2018, 26, 314.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  JE Bara, DE Camper, DL Gin, RD Noble, Acc Chem Res 2010, 43, 152.
         | Crossref | GoogleScholarGoogle Scholar | 19795831PubMed |

[11]  GK Cui, JJ Wang, SJ Zhang, Chem Soc Rev 2016, 45, 4307.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  JL Anthony, SN Aki, EJ Maginn, JF Brennecke, Int J Environ Technol Manage 2004, 4, 105.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  JL Anthony, JM Crosthwaite, D Hert, SN Aki, EJ Maginn, JF Brennecke, RD Rogers, KR Seddon, ACS Symposium Series 2003, 856, 110.

[14]  YS Sistla, A Khanna, J Ind Eng Chem 2014, 20, 2497.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M Zoubeik, M Mohamedali, A Henni, Fluid Phase Equilibria 2016, 419, 67.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  NM Yunus, MI Abdul Mutalib, Z Man, MA Bustam, T Murugesan, Chem Eng J 2012, 94, 189.

[17]  H Shekaari, A Mehrdad, N Noorani, Fluid Phase Equilibria 2017, 451, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  A Mehrdad, H Shekaari, N Noorani, J Chem Thermodyn 2017, 112, 188.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  JD Holbrey, KR Seddon, J Chem Soc Dalton Trans 1999, 213, 2133.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  A Mehrdad, H Shekaari, N Noorani, J Chem Eng Data 2017, 62, 2021.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  H Shekaari, A Mehrdad, N Noorani, J Mol Liq 2017, 242, 884.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  N Noorani, A Mehrdad, F Chakhmaghi, Chem Thermodyn 2020, 145, 106094.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A Mehrdad, N Noorani, J Mol Liq 2019, 291, 111288.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  N Noorani, A Mehrdad, J Mol Liq 2019, 292, 111410.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  R Span, W Wagner, J Phys Chem Ref Data 1996, 25, 1905.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  K Huang, YL Chen, XM Zhang, S Xia, YT Wu, XB Hu, Chem Eng J 2014, 237, 478.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  XS Li, LQ Zhang, Y Zheng, CG Zheng, Ind Eng Chem Res 2015, 54, 8569.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  Y Hou, RE Baltus, Ind Eng Chem Res 2007, 46, 8166.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  JL Anderson, JK Dixon, EJ Maginn, JF Brennecke, J Phys Chem B 2006, 110, 15059.
         | Crossref | GoogleScholarGoogle Scholar | 16884216PubMed |

[30]  T Nonthanasin, A Henni, C Saiwan, Densities and low pressure solubilities of carbon dioxide in five promising ionic liquids. RSC Adv 2014, 4, 7566.
         | Densities and low pressure solubilities of carbon dioxide in five promising ionic liquids.Crossref | GoogleScholarGoogle Scholar |

[31]  J Palomar, M Gonzalez-Miquel, A Polo, F Rodriguez, Ind Eng Chem Res 2011, 50, 3452.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  MJ Muldoon, SNVK Aki, JL Anderson, JK Dixon, JF Brennecke, J Phys Chem B 2007, 111, 9001.
         | Crossref | GoogleScholarGoogle Scholar | 17608519PubMed |

[33]  SNVK Aki, BR Mellein, EM Saurer, JF Brennecke, J Phys Chem B 2004, 108, 20355.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  EK Shin, BCh Lee, J Chem Eng Data 2008, 53, 2728.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  M Constantini, VA Toussaint, A Shariati, CJ Peters, I Kikic, J Chem Eng Data 2005, 50, 52.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  MC Kroon, A Shariati, M Costantini, GJ Witkamp, RA Sheldon, CJ Peters, J Chem Eng Data 2005, 50, 173.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  A Shariati, K Gutkowski, CJ Peters, AIChE J 2005, 51, 1532.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  S Gallardo-Fuentes, R Contreras, M Isaacs, J Honores, D Quezada, E Landaeta, R Ormazábal-Toledo, J CO2 Util 2016, 16, 114.

[39]  P Kuban, P Janos, V Kuban, Collect Czech Chem Commun 1998, 63, 770.

[40]  A Mehrdad, N Noorani, Sep Purif Technol 2019, 226, 138.

[41]  C Wang, X Luo, H Luo, D Jiang, H Li, S Dai, Angew Chem 2011, 50, 4918.

[42]  SR Bhavsar, SC Kumbharkar, UK Kharu, J Membr Sci 2012, 389, 305.