Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

A Computational Comparative Study for the Spectroscopic Evaluation of Triazine Derivative Dyes in Implicit Solvation Model Systems Using Semi-Empirical and Time-Dependent Density Functional Theory Approaches

Victor Akpe https://orcid.org/0000-0001-8639-321X A B , Timothy J. Biddle https://orcid.org/0000-0003-4440-1781 A , Christian Madu https://orcid.org/0000-0002-9833-9517 C , Christopher L. Brown https://orcid.org/0000-0001-5135-0244 A B , Tak H. Kim https://orcid.org/0000-0002-4495-176X A B and Ian E. Cock https://orcid.org/0000-0002-8732-8513 A B D
+ Author Affiliations
- Author Affiliations

A School of Environment and Science, Griffith University, Nathan Campus, Nathan, Qld 4111, Australia.

B Environmental Futures Research Institute, Griffith University, Nathan Campus, Nathan, Qld 4111, Australia.

C Department of Chemistry, Collin College, Preston Ridge Campus, Frisco, TX 75035, USA.

D Corresponding author. Email: I.Cock@griffith.edu.au

Australian Journal of Chemistry 74(12) 856-863 https://doi.org/10.1071/CH21196
Submitted: 12 August 2021  Accepted: 24 October 2021   Published: 23 November 2021

Journal Compilation © CSIRO 2021 Open Access CC BY-NC-ND

Abstract

The spectroscopic data for a range of cyclopenta-[d][1,2,3]-triazine derivative dyes have been evaluated using various standard computational approaches. Absorption data of these dyes were obtained using the ZINDO/S semi-empirical model for vertical excitation energies of structures optimised with the AM1, PM3, and PM6 methods. These studies were conducted under vacuum and solution states using the polarisation continuum model (PCM) for implicit solvation in the linear response model. The accuracy, along with the modest computational costs of using the ZINDO/S prediction, combined with the PM3 optimisation method for absorption data was reliable. While a higher computational cost is required for the time-dependent density functional theory (TDDFT), this method offers a reliable method for calculating both the absorption and emission data for the dyes studied (using vertical and adiabatic excitation energies, respectively) via state-specific solvation. This research demonstrates the potential of computational approaches utilising solvation in evaluating the spectroscopic properties of dyes in the rational design of fluorescent probes.

Keywords: spectroscopic evaluation, PM3, ZINDO, TDDFT, computational chemistry, implicit solvation, rational chemical design, computational chemical design, computational cost.


References

[1]  L. Henriksen, H. Autrup, Acta Chem. Scand. 1970, 24, 2629.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  L. Henriksen, H. Autrup, Acta Chem. Scand. 1972, 26, 3342.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  L. Zhu, H.-C. Becker, L. Henriksen, K. Kilså, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 73, 757.
         | Crossref | GoogleScholarGoogle Scholar | 19457716PubMed |

[4]  Y.-C. Hung, J.-C. Jiang, C.-Y. Chao, W.-F. Su, S.-T. Lin, J. Phys. Chem. B 2009, 113, 8268.
         | Crossref | GoogleScholarGoogle Scholar | 19473008PubMed |

[5]  G. E. Maciel, J. McIver, N. Ostlund, J. Pople, J. Am. Chem. Soc. 1970, 92, 4497.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  M. J. Dewar, E. G. Zoebisch, E. F. Healy, J. J. Stewart, J. Am. Chem. Soc. 1985, 107, 3902.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J. J. P. Stewart, J. Comput. Chem. 1989, 10, 221.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. J. P. Stewart, J. Comput. Chem. 1991, 12, 320.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  J. J. P. Stewart, J. Mol. Model. 2007, 13, 1173.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. D. Bacon, M. C. Zerner, Theor. Chim. Acta 1979, 53, 21.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  G. V. Baryshnikov, R. R. Valiev, N. N. Karaush, V. A. Minaeva, A. N. Sinelnikov, S. K. Pedersen, M. Pittelkow, B. F. Minaevab, H. Ågrena, Phys. Chem. Chem. Phys. 2016, 18, 28040.
         | Crossref | GoogleScholarGoogle Scholar | 27711404PubMed |

[12]  K. Wojciechowski, A. Szymczak, Dyes Pigm. 2007, 75, 45.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  A. G. Eshimbetov, E. L. Kristallovich, N. D. Abdullaev, T. S. Tulyaganov, K. M. Shakhidoyatov, Spectrochim. Acta A 2006, 65, 299.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  M. Caricato, O. Andreussi, S. Corni, J. Phys. Chem. B 2006, 110, 16652.
         | Crossref | GoogleScholarGoogle Scholar | 16913802PubMed |

[15]  M. Caricato, B. Mennucci, J. Tomasi, Mol. Phys. 2006, 104, 875.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  J. Peszke, W. Śliwa, Spectrochim. Acta A 2002, 58, 2127.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  L. J. Cavichiolo, T. Hasegawa, F. S. Nunes, Spectrochim. Acta A 2006, 65, 859.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  I. Tubert-Brohman, C. R. W. Guimarães, W. L. Jorgensen, J. Chem. Theory Comput. 2005, 1, 817.
         | Crossref | GoogleScholarGoogle Scholar | 19011692PubMed |

[19]  M. Kowalczyk, N. Chen, S. J. Jang, ACS Omega 2019, 4, 5758.
         | Crossref | GoogleScholarGoogle Scholar | 31459728PubMed |

[20]  G. V. Baryshnikov, S. V. Bondarchuk, V. A. Minaeva, H. Ågren, B. F. Minaev, J. Mol. Model. 2017, 23, 55.
         | Crossref | GoogleScholarGoogle Scholar | 28161782PubMed |

[21]  R. Cammi, B. Mennucci, J. Chem. Phys. 1999, 110, 9877.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  R. Improta, V. Barone, G. Scalmani, M. J. Frisch, J. Chem. Phys. 2006, 125, 054103.
         | Crossref | GoogleScholarGoogle Scholar | 16942199PubMed |

[23]  M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, J. Cheminform. 2012, 4, 17.
         | Crossref | GoogleScholarGoogle Scholar | 22889332PubMed |

[24]  H. B. Schlegel, J. Comput. Chem. 1982, 3, 214.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  M. W. Wong, K. B. Wiberg, M. J. Frisch, J. Am. Chem. Soc. 1992, 114, 1645.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  B. Mennucci, R. Cammi, J. Tomasi, J. Chem. Phys. 1998, 109, 2798.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
         | Crossref | GoogleScholarGoogle Scholar | 18989472PubMed |

[28]  Z. Zara, J. Iqbal, K. Ayub, M. Irfan, A. Mahmood, R. A. Khera, B. Eliasson, J. Mol. Struct. 2017, 1149, 282.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 1984, 80, 3265.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  D. Karlsson, Theoretical Studies of Optical Absorption in Low-Bandgap Polymers 2005, Masters thesis, Linköpings Universitet, Institute of Technology, Sweden. Available at: https://www.diva-portal.org/smash/get/diva2:20604/FULLTEXT01.pdf

[32]  M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  A. S. Christensen, T. Kubař, Q. Cui, M. Elstner, Chem. Rev. 2016, 116, 5301.
         | Crossref | GoogleScholarGoogle Scholar | 27074247PubMed |