Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Folic Acid-Targeted MXene Nanoparticles for Doxorubicin Loaded Drug Delivery

Zhen Liu A B , Lan Xie A , Jia Yan A , Pengfei Liu B , Huixiang Wen B and Huijun Liu https://orcid.org/0000-0002-7126-4738 A B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China.

B Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, Hunan, 421001, China.

C Corresponding author. Email: liuhuijun@usc.edu.cn

Australian Journal of Chemistry 74(12) 847-855 https://doi.org/10.1071/CH21216
Submitted: 1 September 2021  Accepted: 25 October 2021   Published: 30 November 2021

Abstract

MXenes are two-dimensional (2D) materials with a large specific surface area and abundant surface functional groups. A folate receptors-targeted drug carrier was constructed based on the rich surface functional groups and high biocompatibility of MXenes. This drug carrier possesses as high as 69.9 % drug-loading capability and as long as 48 h drug release time. Tumour targeting and a pH-responsive mechanism can make MXene nanoparticles quickly accumulate in tumour sites and slowly release loads. The results showed that DOX was released in a large amount in a PBS solution at pH 4.5. Compared with the naked drug, MXenes-FA-SP@DOX has a higher cell inhibition rate and a longer drug action time at a lower concentration (less than 10 μg mg−1). This drug delivery system exhibited potential applications for the treatment of malignant tumour and this work extends the biomedical applications of MXenes in nanomedicine.

Keywords: MXenes, targeted drug carrier, folate receptors, nanoparticles, doxorubicin, pH-responsive mechanism, cancer therapy.


References

[1]  F. Gong, N. Yang, X. Wang, Q. Zhao, Q. Chen, Z. Liu, et al. Nano Today 2020, 32, 100851.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. Wei, T. Lu, Z. Nong, G. Li, X. Pan, Y. Wei, et al. J. Drug Deliv. Sci. Technol. 2019, 53, 101202.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, et al. Adv. Mater. 2011, 23, 4248.
         | Crossref | GoogleScholarGoogle Scholar | 21861270PubMed |

[4]  M. Sokol, V. Natu, S. Kota, M. W. Barsoum, Trends Chem. 2019, 1, 210.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  M. W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides 2013 (Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim)

[6]  X. Wang, L. Chen, L. Wang, Q. Fan, D. Pan, J. Li, et al. Sci. China Chem. 2019, 62, 933.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Chem. Soc. Rev. 2018, 47, 5109.
         | Crossref | GoogleScholarGoogle Scholar | 29667670PubMed |

[8]  M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall’Agnese, P. Rozier, P. L. Taberna, et al. Science 2013, 341, 1502.
         | Crossref | GoogleScholarGoogle Scholar | 24072919PubMed |

[9]  S. J. Kim, H. J. Koh, C. E. Ren, O. Kwon, K. Maleski, S. Y. Cho, et al. ACS Nano 2018, 12, 986.
         | Crossref | GoogleScholarGoogle Scholar | 29368519PubMed |

[10]  Z. Wu, C. Li, Z. Li, K. Feng, M. Cai, D. Zhang, et al. ACS Nano 2021, 15, 5696.
         | Crossref | GoogleScholarGoogle Scholar | 33624496PubMed |

[11]  A. Hermawan, T. Hasegawa, Y. Asakura, S. Yin, Separ. Purif. Tech. 2021, 270, 118815.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. Salauddin, S. M. S. Rana, M. Sharifuzzaman, M. T. Rahman, C. Park, H. Cho, et al. Adv. Energy Mater. 2021, 11, 2002832.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  A VahidMohammadi, J Rosen, Y Gogotsi, Science 2021, 372, eabf1581.
         | Crossref | GoogleScholarGoogle Scholar | 34112665PubMed |

[14]  R. Li, L. Zhang, L. Shi, P. Wang, ACS Nano 2017, 11, 3752.
         | Crossref | GoogleScholarGoogle Scholar | 28339184PubMed |

[15]  F. Wang, C. Yang, M. Duan, Y. Tang, J. Zhu, Biosens. Bioelectron. 2015, 74, 1022.
         | Crossref | GoogleScholarGoogle Scholar | 26264270PubMed |

[16]  K. Rasool, M. Helal, A. Ali, C. E. Ren, Y. Gogotsi, K. A. Mahmoud, ACS Nano 2016, 10, 3674.
         | Crossref | GoogleScholarGoogle Scholar | 26909865PubMed |

[17]  Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li, Z. Wang, et al. Adv. Mater. 2017, 29, 1604847.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  C. Dai, Y. Chen, X. Jing, L. Xiang, D. Yang, H. Lin, et al. ACS Nano 2017, 11, 12696.
         | Crossref | GoogleScholarGoogle Scholar | 29156126PubMed |

[19]  H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Nano Lett. 2017, 17, 384.
         | Crossref | GoogleScholarGoogle Scholar | 28026960PubMed |

[20]  G. Liu, J. Zou, Q. Tang, X. Yang, Y. Zhang, Q. Zhang, et al. ACS Appl. Mater. Interfaces 2017, 9, 40077.
         | Crossref | GoogleScholarGoogle Scholar | 29099168PubMed |

[21]  Y. Liu, Q. Han, W. Yang, X. Gan, Y. Yang, K. Xie, et al. Mater. Sci. Eng. C 2020, 116, 111212.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  X. Han, J. Huang, H. Lin, Z. Wang, P. Li, Y. Chen, Adv. Healthcare Mater. 2018, 7, 1701394.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. A. Ledermann, S. Canevari, T. Thigpen, Ann. Oncol. 2015, 26, 2034.
         | Crossref | GoogleScholarGoogle Scholar | 26063635PubMed |

[24]  C. Marchetti, I. Palaia, M. Giorgini, C. De Medici, R. Iadarola, L. Vertechy, et al. OncoTargets Ther. 2014, 7, 1223.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  M. Bagnoli, S. Canevari, M. Figini, D. Mezzanzanica, F. Raspagliesi, A. Tomassetti, et al. Gynecol. Oncol. 2003, 88, S140.
         | Crossref | GoogleScholarGoogle Scholar | 12586106PubMed |

[26]  M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, et al. Chem. Mater. 2017, 29, 7633.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  H. Riazi, M. Anayee, K. Hantanasirisakul, A. A. Shamsabadi, B. Anasori, Y. Gogotsi, et al. Adv. Mater. Interfaces 2020, 7, 1902008.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  M. E. Nik, M. R. Jaafari, M. Mashreghi, S. Nikoofal-Sahlabadi, M. Amin, H. R. Sadeghnia, et al. Int. J. Pharm. 2021, 604, 120710.
         | Crossref | GoogleScholarGoogle Scholar | 34019972PubMed |

[29]  D. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry 1966 (McGraw-Hill: New York, NY)

[30]  H. Riazi, M. Anayee, K. Hantanasirisakul, A. A. Shamsabadi, B. Anasori, Y. Gogotsi, et al. Adv. Mater. Interfaces 2020, 7, 1902008.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  F. Bu, M. M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry, D. Zhao, Nano Today 2020, 30, 100803.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  S. Mura, J. Nicolas, P. Couvreur, Nat. Mater. 2013, 12, 991.
         | Crossref | GoogleScholarGoogle Scholar | 24150417PubMed |

[33]  J. Wang, W. Tao, X. Chen, O. C. Farokhzad, G. Liu, Theranostics 2017, 7, 3915.
         | Crossref | GoogleScholarGoogle Scholar | 29109787PubMed |