Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Colourimetric Detection of Tebuconazole in Aqueous Solution Based on an Unmodified Aptamer and the Aggregation of Gold Nanoparticles

Xicheng Xie A , Lingyun Li A , Lumei Wang https://orcid.org/0000-0002-2543-9779 A B C , Chaoqiang Pan A , Dongwei Zhang A and Guoqing Shen A B
+ Author Affiliations
- Author Affiliations

A School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.

B Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, Yunnan 671000, China.

C Corresponding author. Email: zjuwlm@163.com

Australian Journal of Chemistry 74(12) 838-846 https://doi.org/10.1071/CH21171
Submitted: 22 July 2021  Accepted: 21 October 2021   Published: 15 November 2021

Abstract

This paper illustrates the establishment of a colourimetric method for detection of the fungicide tebuconazole (TEB) in aqueous samples based on an unmodified TEB-specific aptamer and gold nanoparticles (AuNPs). In the absence of TEB, the AuNPs are coated with a TEB-specific aptamer and then stably dispersed a NaCl solution of high concentration, leading to a red solution and producing a maximum UV absorption peak at 520 nm. In the presence of TEB, due to the specific high affinity between TEB and the TEB-specific aptamer, the aptamer combines with TEB to form stable compounds, causing the AuNPs to be exposed in the solution and aggregate. The aggregated AuNPs turn the solution from red to blue, presenting a maximum UV absorption peak at 650 nm. Therefore, the concentration of TEB in the system can be quantitatively detected through the changes in absorbance. This TEB selective colourimetric biosensor detects TEB over a linear concentration range of 20 to 400 nM (R = 0.99385) and has a limit of detection (LOD) of 4.13 nM. The average recovery of TEB is 94.9–104.8 % in the application of actual water samples with the relative standard deviations (RSD) ranging from 1.01 to 5.34 %. With considerable sensitivity and selectivity, this aptasensor indicates great potential for TEB detection in aqueous samples.

Keywords: colorimetric detection, aptamer, tebuconazole, AuNPs, fungicide, biosensor, spectroscopy, triazole, assay.


References

[1]  N. T. Sehnem, P. Souza-Cruz, M. D. C. R. Peralba, M. A. Zachia Ayub, J. Environ. Sci. Health B 2009, 45, 67.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  B. Munoz-Leoz, E. Ruiz-Romera, I. Antigueedad, C. Garbisu, Soil Biol. Biochem. 2011, 43, 2176.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  L. Yu, M. Chen, Y. Liu, W. Gui, G. Zhu, Aquat. Toxicol. 2013, 138–139, 35.
         | Crossref | GoogleScholarGoogle Scholar | 23685399PubMed |

[4]  B. Montuelle, U. Dorigo, A. Berard, B. Volat, A. Bouchez, A. Tlili, et al. Hydrobiologia 2010, 657, 123.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  R. Noguerol-Pato, R. M. Gonzalez-Rodriguez, C. Gonzalez-Barreiro, B. Cancho-Grande, J. Simal-Gandara, Food Chem. 2011, 124, 1525.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  European Food Safety Authority A. Brancato, D. Brocca, C. De Lentdecker, L. Ferreira, L. Greco, et al. EFSA J. 2018, 16, e05257.
         | 32625923PubMed |

[7]  L. Qiao, H. Ma, S. Jiang, X. Lu, Journal of Shandong Agricultural University Natural Science. 2010, 41, 495.

[8]  I. M. Shaheed, S. A. Dhahir, Periód. Tchê Quím. 2020, 17, 1046.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  B. Z. Dong, Y. P. Yang, N. N. Pang, J. Y. Hu, Food Chem. 2018, 260, 66.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  N. A. Akarcay, D. S. Chormey, N. A. Kasa, B. T. Zaman, S. Bakirdere, Int. J. Environ. Anal. Chem. 2020, 100, 1197.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  Z. Zhu, D. Lu, H. Yuan, Redai Zuowu Xuebao 2013, 34, 2484.

[12]  N. Liu, F. Dong, J. Xu, X. Liu, Z. Chen, Y. Tao, et al. J. Agric. Food Chem. 2015, 63, 6297.
         | Crossref | GoogleScholarGoogle Scholar | 26125486PubMed |

[13]  C. Danks, M. Q. Chaudhry, L. Parker, I. Barker, J. N. Banks, Food Agric. Immunol. 2001, 13, 151.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Y. Wang, J. Xu, Y. Qiu, P. Li, B. Liu, L. Yang, et al. J. Agric. Food Chem. 2019, 67, 9096.
         | Crossref | GoogleScholarGoogle Scholar | 31356079PubMed |

[15]  P. Qi, J. Wang, Z. Wang, X. Wang, X. Wang, X. Xu, et al. Electrochim. Acta 2018, 274, 406.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  D. Luo, X. Huang, B. Liu, W. Zou, Y. Wu, J. Agric. Food Chem. 2021, 69, 3537.
         | Crossref | GoogleScholarGoogle Scholar | 33721998PubMed |

[17]  A. D. Ellington, J. W. Szostak, Nature 1990, 346, 818.
         | Crossref | GoogleScholarGoogle Scholar | 1697402PubMed |

[18]  R. Stoltenburg, C. Reinemann, B. Strehlitz, Biomol. Eng. 2007, 24, 381.
         | Crossref | GoogleScholarGoogle Scholar | 17627883PubMed |

[19]  J. Zhang, P. Chen, X. Wu, J. Chen, L. Xu, G. Chen, et al. Biosens. Bioelectron. 2011, 26, 2645.
         | Crossref | GoogleScholarGoogle Scholar | 21146976PubMed |

[20]  Y. Tang, Y. Hu, P. Zhou, C. X. Wang, H. Tao, Y. G. Wu, J. Agric. Food Chem. 2021, 69, 2884.
         | Crossref | GoogleScholarGoogle Scholar | 33646795PubMed |

[21]  M. Famulok, J. S. Hartig, G. Mayer, Chem. Rev. 2007, 107, 3715.
         | Crossref | GoogleScholarGoogle Scholar | 17715981PubMed |

[22]  B. Liu, Y. Tang, Y. Yang, Y. Wu, Food Control 2021, 129, 108208.

[23]  V.-T. Nguyen, Y. S. Kwon, J. H. Kim, M. B. Gu, Chem. Commun. 2014, 50, 10513.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  M. Sabela, S. Balme, M. Bechelany, J.-M. Janot, K. Bisetty, Adv. Eng. Mater. 2017, 19, 1700270.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  S. Zhan, Y. Wu, L. He, F. Wang, X. Zhan, P. Zhou, et al. Anal. Methods 2012, 4, 3997.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  Y. Qi, B. Li, Chem. – Eur. J. 2011, 17, 1642.
         | Crossref | GoogleScholarGoogle Scholar | 21268167PubMed |

[27]  H. Jans, Q. Huo, Chem. Soc. Rev. 2012, 41, 2849.
         | Crossref | GoogleScholarGoogle Scholar | 22182959PubMed |

[28]  R. M. Bright, M. D. Musick, M. J. Natan, Langmuir 1998, 14, 5695.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  H. X. Li, L. Rothberg, Proc. Natl. Acad. Sci. USA 2004, 101, 14036.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  P. M. Tomchuk, B. P. Tomchuk, J. Exp. Theor. Phys. 1997, 85, 360.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  L. He, W. Zhi, Y. Wu, S. Zhan, F. Wang, H. Xing, P. Zhou, Anal. Methods 2012, 4, 2266.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  X. Dang, W. Gu, X. Zheng, X. Fei, F. Tian, H. Xing, et al. Aust. J. Chem. 2019, 72, 555.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  Y. Wu, S. Zhan, H. Xing, L. He, L. Xu, P. Zhou, Nanoscale 2012, 4, 6841.
         | Crossref | GoogleScholarGoogle Scholar | 23034818PubMed |

[34]  Y. Yang, Y. Tang, C. Wang, B. Liu, Y. Wu, Anal. Chim. Acta 2021, 1179, 338837.
         | Crossref | GoogleScholarGoogle Scholar | 34535250PubMed |

[35]  D. Zhang, W. Zhang, J. Ye, S. Zhan, B. Xia, J. Lv, et al. Aust. J. Chem. 2016, 69, 12.
         | Crossref | GoogleScholarGoogle Scholar |