Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Synthesis, Structural Characterisation, and Chemoselective Manipulation of Certain Functionalised Cyclic Sulfates Derived from Chiral, Non-Racemic, and Polysubstituted Bicyclo[2.2.2]octane-2,3-diols

Martin G. Banwell https://orcid.org/0000-0002-0582-475X A B C , Antony L. Crisp https://orcid.org/0000-0001-7173-4376 B , BoRa Lee B , Ping Lan https://orcid.org/0000-0002-9285-3259 A , Hannah E. Bollard B , Jas S. Ward B and Anthony C. Willis B
+ Author Affiliations
- Author Affiliations

A Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China.

B Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia.

C Corresponding author. Email: mgb@rsc.anu.edu.au

Australian Journal of Chemistry 74(9) 640-651 https://doi.org/10.1071/CH21140
Submitted: 15 June 2021  Accepted: 7 July 2021   Published: 28 July 2021

Abstract

Certain cyclic sulfates (e.g. 23) together with various of their precursor sulfites (e.g. 21 and 22) have been prepared from the corresponding chiral, non-racemic bicyclo[2.2.2]octane-2,3-diols (e.g. 20). Such diols are obtained by engaging the corresponding enzymatically derived and enantiomerically enriched or homochiral cis-1,2-dihydrocatechol (e.g. 10) or certain derivatives in either inter- or intra-molecular Diels–Alder cycloaddition reactions. Other functionalities present within the title compounds can be chemoselectively manipulated without adversely affecting the associated sulfate residues.

Keywords: cis-1,2-dihydrocatechol, cyclic sulfate, cyclic sulfite, Diels–Alder cycloaddition, heterocycle, oxidation, reduction, X-ray crystal structure.


References

[1]  (a) See for example: C. Mushti, M. I. Papisov, Molecules 2012, 17, 13266.
         | Crossref | GoogleScholarGoogle Scholar | 23135631PubMed |
      (b) M. Artola, L. Wu, M. J. Ferraz, C.-L. Kuo, L. Raich, I. Z. Breen, W. A. Offen, J. D. C. Codée, G. A. van der Marel, C. Rovira, J. M. F. G. Aerts, G. J. Davies, H. S. Overkleeft, ACS Cent. Sci. 2017, 3, 784.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) For some key and representative publications see: Y. Gao, K. B. Shaprless, J. Am. Chem. Soc. 1988, 110, 7538.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. S. Berridge, M. P. Franceschini, E. Rosenfeld, T. J. Tewson, J. Org. Chem. 1990, 55, 1211.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. G. Steinmann, J. H. Phillips, W. J. Sanders, L. L. Kiessling, Org. Lett. 2001, 3, 3557.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) N. Takechi, S. Ait-Mohand, M. Medebielle, W. R. Dolbier, Org. Lett. 2002, 4, 4671.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Inoue, S. Motomatsu, M. Nakada, Synth. Commun. 2003, 33, 2857.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) R. Tello-Aburto, T. D. Newar, W. A. Maio, J. Org. Chem. 2012, 77, 6271.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) D. R. Boyd, N. D. Sharma, M. Kaik, P. B. A. McIntyre, J. F. Malone, P. J. Stevenson, Org. Biomol. Chem. 2014, 12, 2128.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) A. Jakubowska, G. Zuchowski, K. Kulig, Tetrahedron Asymmetry 2015, 26, 1261.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) M. S. Eno, A. Lu, J. P. Morken, J. Am. Chem. Soc. 2016, 138, 7824.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) V. Laserna, E. Martin, E. C. Escudero-Adán, A. W. Kleij, Adv. Synth. Catal. 2016, 358, 3832.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) For key reviews of this topic see: B. B. Lohray, Synthesis 1992, 1035.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H.-S. Byun, L. He, R. Bittmann, Tetrahedron 2000, 56, 7051.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. K. Sharma, M. G. Banwell, A. C. Willis, Asian J. Org. Chem. 2014, 3, 632.
         | Crossref | GoogleScholarGoogle Scholar |

[5]     (a) For recent reviews on the microbial production and the chemical utilisation of cis-1,2-dihydrocatechols see: S. E. Lewis, in Asymmetric Desymmetrization Reactions (Ed. S.-L. You) 2016 pp. 279–346 (Wiley VCH: Weinheim).
      (b) T. Hudlicky, ACS Omega 2018, 3, 17326.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Lan, S. Ye, M. G. Banwell, Chem. Asian J. 2019, 14, 4001.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  M. G. Banwell, J. R. Dupuche, R. W. Gable, Aust. J. Chem. 1996, 49, 639.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  T. A. Reekie, K. A. B. Austin, M. G. Banwell, A. C. Willis, Aust. J. Chem. 2008, 61, 94.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  S. G. Stewart, G. J. Harfoot, K. J. McRae, Y. Teng, L.-J. Yu, B. Chen, R. Cammi, M. L. Coote, M. G. Banwell, A. C. Willis, J. Org. Chem. 2020, 85, 13080.
         | Crossref | GoogleScholarGoogle Scholar | 32914974PubMed |

[9]  F. Tang, P. Lan, B. Bolte, M. G. Banwell, J. S. Ward, A. C. Willis, J. Org. Chem. 2018, 83, 14049.
         | Crossref | GoogleScholarGoogle Scholar | 30359031PubMed |

[10]  (a) For examples of related processes see: K. A. B. Austin, M. G. Banwell, A. C. Willis, Org. Lett. 2008, 10, 4465.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) E.-L. Chang, B. D. Schwartz, A. G. Draffan, M. G. Banwell, A. C. Willis, Chem. Asian J. 2015, 10, 427.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. N. Muhammad, A. G. Draffan, M. G. Banwell, A. C. Willis, Synlett 2016, 27, 61.
      (d) R. N. Muhammad, E. L. Chang, A. G. Draffan, A. C. Willis, P. D. Carr, M. G. Banwell, Aust. J. Chem. 2018, 71, 655.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  DENZO–SMN: Z. Otwinowski, W. Minor, in Methods in Enzymology, Volume 276: Macromolecular Crystallography, Part A (Eds C. W. Carter Jr, R. M. Sweet) 1997, pp. 307–326 (Academic Press: New York, NY).

[14]  CrysAlisPro PRO, version 1.171.37.35h 2015 (release 2 Sep 2015 CrysAlis171.NET) (compiled 9 Feb 2015, 16:26:32) (Agilent Technologies: Oxfordshire, UK).

[15]  SIR92: A Altomare, G Cascarano, C Giacovazzo, A Guagliardi, M. C. Burla, G Polidori, M Camalli, J. Appl. Cryst. 1994, 27, 435.

[16]  P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Cryst. 2003, 36, 1487.
         | Crossref | GoogleScholarGoogle Scholar |