Tandem Oxidation-Dehydrogenation of (Hetero)Arylated Primary Alcohols via Perruthenate Catalysis
Christian J. Bettencourt A , Sharon Chow A , Peter W. Moore A , Christopher D. G. Read A , Yanxiao Jiao B , Jan Peter Bakker C , Sheng Zhao A , Paul V. Bernhardt A and Craig M. Williams A DA School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia.
B College of Chemistry and Chemical Engineering, Jiujiang University, Jiujiang, 332005, China.
C Institute for Life Science & Technology, Hanze University Groningen, NL-9747 AS Groningen, Netherlands.
D Corresponding author. Email: c.williams3@uq.edu.au
Australian Journal of Chemistry 74(9) 652-659 https://doi.org/10.1071/CH21137
Submitted: 8 June 2021 Accepted: 11 August 2021 Published: 30 August 2021
Abstract
Tandem oxidative-dehydrogenation of primary alcohols to give α,β-unsaturated aldehydes in one pot are rare transformations in organic synthesis, with only two methods currently available. Reported herein is a novel method using the bench-stable salt methyltriphenylphosphonium perruthenate (MTP3), and a new co-oxidant NEMO·PF6 (NEMO = N-ethyl-N-hydroxymorpholinium) which provides unsaturated aldehydes in low to moderate yields. The Ley-Griffith oxidation of (hetero)arylated primary alcohols with N-oxide co-oxidants NMO (NMO = N-methylmorpholine N-oxide)/NEMO, is expanded by addition of the N-oxide salt NEMO·PF6 to convert the intermediate saturated aldehyde into its unsaturated counterpart. The discovery, method development, reaction scope, and associated challenges of this method are highlighted. The conceptual value of late-stage dehydrogenation in natural product synthesis is demonstrated via the synthesis of a polyene scaffold related to auxarconjugatin B.
Keywords: dehydrogenation, oxidation, MTP3, TPAP, tandem, catalysis, polyene, N-ethylmorpholine N-oxide.
References
[1] H. Chen, L. Liu, T. Huang, J. Chen, T. Chen, Adv. Synth. Catal. 2020, 362, 3332.| Crossref | GoogleScholarGoogle Scholar |
[2] (a) K. B. Sharpless, R. F. Lauer, A. Y. Teranishi, J. Am. Chem. Soc. 1973, 95, 6137.
| Crossref | GoogleScholarGoogle Scholar |
(b) D. R. Williams, K. Nishitani, Tetrahedron Lett. 1980, 21, 4417.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) Y. Ito, T. Hirao, T. Saegusa, J. Org. Chem. 1978, 43, 1011.
| Crossref | GoogleScholarGoogle Scholar |
(b) I. Minami, K. Takahashi, I. Shimizu, T. Kimura, J. Tsuji, Tetrahedron 1986, 42, 2971.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Lu, P. L. Nguyen, N. Lévaray, H. Lebel, J. Org. Chem. 2013, 78, 776.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Zhang, L. Wang, Q. Liu, Z. Yang, Y. Huang, Chem. Commun. 2013, 49, 11662.
| Crossref | GoogleScholarGoogle Scholar |
(e) For methyl enol ethers see: M. G. Lauer, W. H. Henderson, A. Awad, J. P. Stambuli, Org. Lett. 2012, 14, 6000.
| Crossref | GoogleScholarGoogle Scholar |
[4] T. Hirao, J. Org. Chem. 2019, 84, 1687.
| Crossref | GoogleScholarGoogle Scholar | 30668104PubMed |
[5] (a) T. Mukaiyama, M. Ohshima, T. Nakatsuka, Chem. Lett. 1983, 12, 1207.
| Crossref | GoogleScholarGoogle Scholar |
(b) M.-M. Wang, X.-S. Ning, J.-P. Qu, Y.-B. Kang, ACS Catal. 2017, 7, 4000.
| Crossref | GoogleScholarGoogle Scholar |
[6] Y. Shvo, A. H. I. Arisha, J. Org. Chem. 1998, 63, 5640.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) W. Gao, Z. He, Y. Qian, J. Zhao, Y. Huang, Chem. Sci. 2012, 3, 883.
| Crossref | GoogleScholarGoogle Scholar |
(b) T. Diao, T. J. Wadzinski, S. S. Stahl, Chem. Sci. 2012, 3, 887.
| Crossref | GoogleScholarGoogle Scholar |
(c) G.-F. Pan, X.-Q. Zhu, R.-L. Guo, Y.-R. Gao, Y.-Q. Wang, Adv. Synth. Catal. 2018, 360, 4774.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. Chen, A. J. Rago, G. Dong, Angew. Chem. Int. Ed. 2018, 57, 16205.
| Crossref | GoogleScholarGoogle Scholar |
[9] C. S. Yi, D. W. Lee, Organometallics 2009, 28, 947.
| Crossref | GoogleScholarGoogle Scholar | 20119477PubMed |
[10] Z. Wang, Z. He, L. Zhang, Y. Huang, J. Am. Chem. Soc. 2018, 140, 735.
| Crossref | GoogleScholarGoogle Scholar | 29251918PubMed |
[11] D. Huang, S. M. Szewczyk, P. Zhang, T. R. Newhouse, J. Am. Chem. Soc. 2019, 141, 5669.
| Crossref | GoogleScholarGoogle Scholar | 30861346PubMed |
[12] X.-W. Zhang, G.-Q. Jiang, S.-H. Lei, X.-H. Shan, J.-P. Qu, Y.-B. Kang, Org. Lett. 2021, 23, 1611.
| Crossref | GoogleScholarGoogle Scholar | 33577342PubMed |
[13] Y. Hayashi, T. Itoh, H. Ishikawa, Adv. Synth. Catal. 2013, 355, 3661.
| Crossref | GoogleScholarGoogle Scholar |
[14] Y. Cao, L. Liu, T. Huang, T. Chen, New J. Chem. 2020, 44, 8697.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) K. C. Nicolaou, Y.-L. Zhong, P. S. Baran, J. Am. Chem. Soc. 2000, 122, 7596.
| Crossref | GoogleScholarGoogle Scholar |
(b) K. C. Nicolaou, T. Montagnon, P. S. Baran, Angew. Chem. Int. Ed. 2002, 41, 993.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. C. Nicolaou, T. Montagnon, P. S. Baran, Y.-L. Zhong, J. Am. Chem. Soc. 2002, 124, 2245.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. J. Gallen, R. Goumont, T. Clark, F. Terrier, C. M. Williams, Angew. Chem. Int. Ed. 2006, 45, 2929.
| Crossref | GoogleScholarGoogle Scholar |
(e) T. Waters, J. Boulton, T. Clark, M. J. Gallen, C. M. Williams, R. A. J. O’Hair, Org. Biomol. Chem. 2008, 6, 2530.
| Crossref | GoogleScholarGoogle Scholar |
[16] See for example: M. S. Yusubov, N. S. Soldatova, P. S. Postnikov, R. R. Valiev, A. Yoshimura, T. Wirth, V. N. Nemykine, V. V. Zhdankin, Chem. Commun. 2019, 55, 7760.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) H. Xie, S. Zhang, H. Li, X. Zhang, S. Zhao, Z. Xu, X. Song, X. Yu, W. Wang, Chem. – Eur. J. 2012, 18, 2230.
| Crossref | GoogleScholarGoogle Scholar | 22278995PubMed |
(b) X. Chen, Y. Zhang, H. Wan, W. Wang, S. Zhang, Chem. Commun. 2016, 52, 3532.
| Crossref | GoogleScholarGoogle Scholar |
[18] Y. Shang, X. Jie, K. Jonnada, S. N. Zafar, W Su, Nat. Commun. 2017, 8, 2273.
| Crossref | GoogleScholarGoogle Scholar | 29273723PubMed |
[19] (a) W. P. Griffith, S. V. Ley, G. P. Whitcombe, A. D. White, J. Chem. Soc. Chem. Commun. 1987, 21, 1625.
| Crossref | GoogleScholarGoogle Scholar |
(b) W. P. Griffith, S. V. Ley, Aldrichim Acta 1990, 23, 13.
(c) W. P. Griffith, Chem. Soc. Rev. 1992, 21, 179.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. V. Ley, J. Norman, W. P. Griffith, S. P. Marsden, Synthesis 1994, 639.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. Langer, J. Prakt. Chem. 2000, 342, 728.
| Crossref | GoogleScholarGoogle Scholar |
(f) R. Lenz, S. V. Ley, J. Chem. Soc., Perkin Trans. 1 1997, 3291.
| Crossref | GoogleScholarGoogle Scholar |
(g) I. R. Baxendale, J. Deeley, C. M. Griffiths-Jones, S. V. Ley, S. Saaby, G. K. Tranmer, Chem. Commun. 2006, 2566.
| Crossref | GoogleScholarGoogle Scholar |
(h) P. Weingart, P. Hütchen, A. Damone, M. Kohns, H. Hasse, W. R. Thiel, ChemCatChem 2020, 12, 3919.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. Shimokawa, T. Ishiwata, K. Shirai, H. Koshino, A. Tanatani, T. Nakata, Y. Hashimoto, K. Nagasawa, Chem. – Eur. J. 2005, 11, 6878.
| Crossref | GoogleScholarGoogle Scholar | 16161173PubMed |
[21] A similar observation was made with secondary alcohols; see: T. J. Blackburn, E. J. Thomas, Tetrahedron 2018, 74, 5399.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) T. J. Zerk, P. W. Moore, C. M. Williams, P. V. Bernhardt, Chem. Commun. 2016, 52, 10301.
| Crossref | GoogleScholarGoogle Scholar |
(b) T. J. Zerk, P. W. Moore, J. S. Harbort, S. Chow, L. Byrne, G. A. Koutsantonis, J. R. Harmer, M. Martínez, C. M. Williams, P. V. Bernhardt, Chem. Sci. 2017, 8, 8435.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. W. Moore, T. J. Zerk, J. M. Burns, P. V. Bernhardt, C. M. Williams, Eur. J. Org. Chem. 2019, 303.
| Crossref | GoogleScholarGoogle Scholar |
[23] P. W. Moore, C. D. G. Read, P. V. Bernhardt, C. M. Williams, Chem. – Eur. J. 2018, 24, 4556.
| Crossref | GoogleScholarGoogle Scholar | 29508453PubMed |
[24] (a) C. D. G. Read, P. W. Moore, C. M. Williams, Green Chem. 2015, 17, 4537.
| Crossref | GoogleScholarGoogle Scholar |
(b) P. W. Moore, P. M. Mirzayans, C. M. Williams, Chem. – Eur. J. 2015, 21, 3567.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. W. Moore, Y. Jiao, P. M. Mirzayans, L. N. Q. Sheng, J. P. Hooker, C. M. Williams, Eur. J. Org. Chem. 2016, 3401.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) R. Bloch, C. Brillet, Synlett 1991, 829.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. Tang, J. Yuan, C. Liu, A. Lei, Dalton Trans. 2014, 43, 13460.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) D. B. Hunter, W. P. Gates, P. M. Bertsch, K. M. Kemner, ACS Symp. Ser. 1998, 715, 282.
| Crossref | GoogleScholarGoogle Scholar |
(b) D. B. Hunter, P. M. Bertsch, Environ. Sci. Technol. 1994, 28, 686.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. L. Mills, D. Kaplan, D. Schwind, D. Adriano, J. Environ. Qual. 1990, 19, 135.
| Crossref | GoogleScholarGoogle Scholar |
[27] A. K. C. Schmidt, C. B. W. Stark, Org. Lett. 2011, 13, 4164.
| Crossref | GoogleScholarGoogle Scholar |
[28] A. K. C. Schmidt, C. B. W. Stark, Org. Lett. 2011, 13, 5788.
| Crossref | GoogleScholarGoogle Scholar |
[29] E. F. Kleinman, in Encyclopedia of Reagents for Organic Synthesis 2001 (John Wiley & Sons, Ltd: Chichester, UK).
[30] (a) B. J. Schreiber, H. Maag, N. Hashimoto, A. Eschenmoser, Angew. Chem. Int. Ed. Engl. 1971, 10, 330.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Porzelle, C. M. Williams, Synthesis 2006, 3025.
[31] (a) K. Yamada, K. Masaki, Y. Hagimoto, S. Kamiya, M. Kunishima, Tetrahedron Lett. 2013, 54, 1758.
| Crossref | GoogleScholarGoogle Scholar |
(b) D. B. Ramachary, C. Venkaiah, Y. V. Reddy, Org. Biomol. Chem. 2014, 12, 5400.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Zhang, M. Liu, C. Wu, G. Zhao, P. Chen, L. Zhou, X. Xie, R. Fang, H. Li, X. She, Angew. Chem. 2020, 132, 3994.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. W. Ng, H. Lin, S. J. Danishefsky, J. Am. Chem. Soc. 2002, 124, 9812.
| Crossref | GoogleScholarGoogle Scholar |
[32] T. Hosoe, K. Fukushima, K. Takizawa, M. Miyaji, K. I. Kawai, Phytochemistry 1999, 52, 459.
| Crossref | GoogleScholarGoogle Scholar |
[33] (a) Z. Fang, P.-C. Liao, Y.-L. Yang, F.-L. Yang, Y.-L. Chen, Y. Lam, K.-F. Hua, S.-H. Wu, J. Med. Chem. 2010, 53, 7967.
| Crossref | GoogleScholarGoogle Scholar | 20964408PubMed |
(b) C. Yoshida, T. Higashi, Y. Hachiro, Y. Fujita, T. Yagi, A. Takechi, C. Nakata, K. Miyashita, N. Kitada, R. Saito, R. Obata, T. Hirano, T. Hara, S. A. Maki, Bioorg. Med. Chem. Lett. 2021, 37, 127837.
| Crossref | GoogleScholarGoogle Scholar |
[34] C. M. Williams, M. A. Dallaston, Aust. J. Chem. 2021, 74, 291.
| Crossref | GoogleScholarGoogle Scholar |
[35] (a) M. Sato, J.-i. Sakaki, Y Sugita, S Yasuda, H Sakoda, C Kaneko, Tetrahedron 1991, 47, 5689.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. R. Katritzky, Z. Wang, M. Wang, C. D. Hall, K. Suzuki, J. Org. Chem. 2005, 70, 4854.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Fuse, A. Ikebe, K. Oosumi, T. Karasawa, K. Matsumura, M. Izumikawa, K. Johmoto, H. Uekusa, K. Shin-Ya, T. Doi, T. Takahashi, Chem. – Eur. J. 2015, 21, 9454.
| Crossref | GoogleScholarGoogle Scholar |
[36] M. J. Burns, Towards the Total Synthesis of Phacelocarpus-2-pyrone A: Novel 2-pyrone Chemistry 2010, Ph.D. thesis, The University of York, York, UK.
[37] (a) V. Piccialli, Molecules 2014, 19, 6534.
| Crossref | GoogleScholarGoogle Scholar | 24853716PubMed |
(b) R. Ray, S. Chandra, D. Maiti, G. K. Lahiri, Chem. – Eur. J. 2016, 22, 8814.
| Crossref | GoogleScholarGoogle Scholar |
[38] Note: MTP3 is impact sensitive; see: M. A. Dallaston, C. J. Bettencourt, S. Chow, J. Gebhardt, J. Spangler, M. R. Johnston, C. Wall, J. S. Brusnahan, C. M. Williams, Chem. – Eur. J. 2019, 25, 9614.
| Crossref | GoogleScholarGoogle Scholar | 31245899PubMed |