Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Theoretical Determination of pKas of P(1)-H Phospholes and their Comparison with N(1)-H Azoles

Sanjeev Rachuru https://orcid.org/0000-0002-6117-7112 A , Jagannadham Vandanapu https://orcid.org/0000-0001-9152-7729 B D and Adam A. Skelton https://orcid.org/0000-0003-0155-8287 C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Geethanjali College of Engineering and Technology, Cheeryal-501301, Telangana, India.

B Department of Chemistry, Osmania University, Hyderabad-500007, India.

C Department of Pharmacy, School of Health Science, University of KwaZulu-Natal, Durban 4000, South Africa.

D Corresponding author. Email: jagannadham1950@yahoo.com

Australian Journal of Chemistry 74(9) 660-668 https://doi.org/10.1071/CH21122
Submitted: 24 May 2021  Accepted: 12 August 2021   Published: 9 September 2021

Abstract

pKas of P(1)-H deprotonation of all phosphole group compounds, phosphole (C4H4PH), 1,2 and 1,3-diphospholes (C3H3PPH), 1,2,3, and 1,2,4-triphospholes (C2H2P2PH), tetraphosphole (CHP3PH), and pentaphosphole (P4PH) are determined by DFT calculations. We have compared these to the pKas of the analogue azole group compounds and the factors that cause the differences of these values are discussed in terms of the stabilities of both the phosphole anions and azole anions.

Keywords: phospholes, pKa, DFT.


References

[1]  C. Charrier, H. Bonnard, G. De Lauzon, F. Mathey, J. Am. Chem. Soc. 1983, 105, 6871.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  I. A. Bezkishko, A. A. Zagidullin, V. A. Milyukov, Russ. Chem. Bull. 2020, 69, 435.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  R. Neier, Science of Synthesis 2002, 12, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. Stubenhofer, C. Kuntz, G. Balazs, M. Zabel, M. Scheer, Chem. Commun. 2009, 1745.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  M. Scheer, S. Deng, O. J. Scherer, M. Sierka, Angew. Chem. Int. Ed. 2005, 44, 3755.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  M. N. Glukhovtsev, A Dransfeld, P. v. R. Schleyer, J. Phys. Chem. 1996, 100, 13447.

[7]  E. J. Padma Malar, J. Org. Chem. 1992, 57, 3694.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  A. A. Zagidullin, I. A. Bezkishko, V. A. Miluykov, O. G. Sinyashin, Mendeleev Commun. 2013, 23, 117.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) L. Nyulászi, Chem. Rev. 2001, 101, 1229.
         | Crossref | GoogleScholarGoogle Scholar | 11710219PubMed |
      (b) L. Nyulászi, Inorg. Chem. 1996, 35, 4690.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  M. N. Glukhovtsev, P. v. R. Schleyer, C Maerker, J. Phys. Chem. 1993, 97, 8200.

[11]  J. Ho, Phys. Chem. Chem. Phys. 2015, 17, 2859.
         | Crossref | GoogleScholarGoogle Scholar | 25503399PubMed |

[12]  S. Sastre, R. Casanovas, F. Munoz, J. Frau, Phys. Chem. Chem. Phys. 2016, 18, 11202.
         | Crossref | GoogleScholarGoogle Scholar | 27052591PubMed |

[13]  S. Zhang, J Baker, P Pulay, J. Phys. Chem. A 2010, 114, 425.
         | Crossref | GoogleScholarGoogle Scholar | 19961191PubMed |

[14]  S. Zhang, J Baker, P Pulay, J. Phys. Chem. A 2010, 114, 432.
         | Crossref | GoogleScholarGoogle Scholar | 20055519PubMed |

[15]  J. Ho, M. L. Coote, Theor. Chem. Acc. 2010, 125, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  R. Casasnovas, D. Fernandiz, J. O. Castro, J. Frau, J. Donoso, F. Munoz, Theor. Chem. Acc. 2011, 130, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  T. N. Brown, N. Mora-Dı’ez, J. Phys. Chem. B 2006, 110, 9270.
         | Crossref | GoogleScholarGoogle Scholar | 16671744PubMed |

[18]  K. K. Govender, I. Cukrowski, J. Phys. Chem. A 2009, 113, 3639.
         | Crossref | GoogleScholarGoogle Scholar | 19309100PubMed |

[19]  K. K. Govender, I. Cukrowski, J. Phys. Chem. A 2010, 114, 1868.
         | Crossref | GoogleScholarGoogle Scholar | 20063850PubMed |

[20]  J Ho, A Klamt, M. L. Coote, J. Phys. Chem. A 2010, 114, 13442.
         | Crossref | GoogleScholarGoogle Scholar | 21133342PubMed |

[21]  R. Casasnovas, J. Frau, J. Ortega-Castro, A. Salvà, J. Donoso, F. Muñoz, J. Mol. Struct. THEOCHEM 2009, 912, 5.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision E.01 2009 (Gaussian, Inc.: Wallingford, CT).

[23]  R. Sanjeev, V. Jagannadham, A. A. Skelton, Aust. J. Chem. 2021, 74, 584.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  R. Sanjeev, R. Ravi, V. Jagannadham, A. A. Skelton, Aust. J. Chem. 2017, 70, 90.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  P. Lian, R. C. Johnston, J. M. Parks, J. C. Smith, J. Phys. Chem. A 2018, 122, 4366.
         | Crossref | GoogleScholarGoogle Scholar | 29633840PubMed |

[26]  B. Thapa, H. B. Schlegel, J. Phys. Chem. A 2016, 120, 5726.
         | Crossref | GoogleScholarGoogle Scholar | 27327957PubMed |

[27]  D. M. Camaioni, C. A. Schwerdtfeger, J. Phys. Chem. A 2005, 109, 10795.
         | Crossref | GoogleScholarGoogle Scholar | 16863129PubMed |

[28]  A. A. Isse, A Gennaro, J. Phys. Chem. B 2010, 114, 7894.
         | Crossref | GoogleScholarGoogle Scholar | 20496903PubMed |

[29]  C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2006, 110, 16066.
         | Crossref | GoogleScholarGoogle Scholar | 16898764PubMed |

[30]  A. V. Marenich, J. Ho, M. L. Coote, C. J. Cramer, D. G. Truhlar, Physiol. Chem. Phys. 2014, 16, 15068.

[31]  A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
         | Crossref | GoogleScholarGoogle Scholar | 19366259PubMed |

[32]  D. B. Chesnut, L. D. Quin, Heteroatom Chem. 2007, 18, 754.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  E. Vessally, J. Struct. Chem. 2008, 49, 979.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  I. V. Omelchenko, O. V. Shishkin, L. Gorb, J. Leszczynski, Struct. Chem. 2016, 27, 101.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  L. D. Quin, W. L. Orton, Chem. Commun. 1979, 401.

[36]  See pages 146 and 147 in: A. R. Katritzky, C. A. Ramsden, J. A. Joule, V. V. Zhdankin, Handbook of Heterocyclic Chemistry, 3rd edn 2010 (Elsevier: Amsterdam).

[37]  L. D. Quin, J. G. Bryson, C. G. Moreland, J. Am. Chem. Soc. 1969, 91, 3308.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  J. Ho, M. L. Coote, J. Chem. Theory Comput. 2009, 5, 295.
         | Crossref | GoogleScholarGoogle Scholar | 26610106PubMed |

[39]  M. Namazian, F. Kalantary-Fotooh, M. R. Noorbala, D. J. Searles, M. L. Coote, J. Mol. Struct. THEOCHEM 2006, 758, 275.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  S. K. Burger, S. Liu, P. W. Ayers, J. Phys. Chem. A 2011, 115, 1293.
         | Crossref | GoogleScholarGoogle Scholar | 21291187PubMed |

[41]  W. A. Henderson, C. A. Streuli, J. Am. Chem. Soc. 1960, 82, 5791.

[42]  N.-N. Pham-Tran, G. Bochoux, D. Delaere, M. T. Negyun, J. Phys. Chem. A 2005, 109, 2957.
         | Crossref | GoogleScholarGoogle Scholar | 16833615PubMed |