Theoretical Determination of pKas of P(1)-H Phospholes and their Comparison with N(1)-H Azoles
Sanjeev Rachuru A , Jagannadham Vandanapu B D and Adam A. Skelton CA Department of Chemistry, Geethanjali College of Engineering and Technology, Cheeryal-501301, Telangana, India.
B Department of Chemistry, Osmania University, Hyderabad-500007, India.
C Department of Pharmacy, School of Health Science, University of KwaZulu-Natal, Durban 4000, South Africa.
D Corresponding author. Email: jagannadham1950@yahoo.com
Australian Journal of Chemistry 74(9) 660-668 https://doi.org/10.1071/CH21122
Submitted: 24 May 2021 Accepted: 12 August 2021 Published: 9 September 2021
Abstract
pKas of P(1)-H deprotonation of all phosphole group compounds, phosphole (C4H4PH), 1,2 and 1,3-diphospholes (C3H3PPH), 1,2,3, and 1,2,4-triphospholes (C2H2P2PH), tetraphosphole (CHP3PH), and pentaphosphole (P4PH) are determined by DFT calculations. We have compared these to the pKas of the analogue azole group compounds and the factors that cause the differences of these values are discussed in terms of the stabilities of both the phosphole anions and azole anions.
Keywords: phospholes, pKa, DFT.
References
[1] C. Charrier, H. Bonnard, G. De Lauzon, F. Mathey, J. Am. Chem. Soc. 1983, 105, 6871.| Crossref | GoogleScholarGoogle Scholar |
[2] I. A. Bezkishko, A. A. Zagidullin, V. A. Milyukov, Russ. Chem. Bull. 2020, 69, 435.
| Crossref | GoogleScholarGoogle Scholar |
[3] R. Neier, Science of Synthesis 2002, 12, 1.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. Stubenhofer, C. Kuntz, G. Balazs, M. Zabel, M. Scheer, Chem. Commun. 2009, 1745.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. Scheer, S. Deng, O. J. Scherer, M. Sierka, Angew. Chem. Int. Ed. 2005, 44, 3755.
| Crossref | GoogleScholarGoogle Scholar |
[6] M. N. Glukhovtsev, A Dransfeld, P. v. R. Schleyer, J. Phys. Chem. 1996, 100, 13447.
[7] E. J. Padma Malar, J. Org. Chem. 1992, 57, 3694.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. A. Zagidullin, I. A. Bezkishko, V. A. Miluykov, O. G. Sinyashin, Mendeleev Commun. 2013, 23, 117.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) L. Nyulászi, Chem. Rev. 2001, 101, 1229.
| Crossref | GoogleScholarGoogle Scholar | 11710219PubMed |
(b) L. Nyulászi, Inorg. Chem. 1996, 35, 4690.
| Crossref | GoogleScholarGoogle Scholar |
[10] M. N. Glukhovtsev, P. v. R. Schleyer, C Maerker, J. Phys. Chem. 1993, 97, 8200.
[11] J. Ho, Phys. Chem. Chem. Phys. 2015, 17, 2859.
| Crossref | GoogleScholarGoogle Scholar | 25503399PubMed |
[12] S. Sastre, R. Casanovas, F. Munoz, J. Frau, Phys. Chem. Chem. Phys. 2016, 18, 11202.
| Crossref | GoogleScholarGoogle Scholar | 27052591PubMed |
[13] S. Zhang, J Baker, P Pulay, J. Phys. Chem. A 2010, 114, 425.
| Crossref | GoogleScholarGoogle Scholar | 19961191PubMed |
[14] S. Zhang, J Baker, P Pulay, J. Phys. Chem. A 2010, 114, 432.
| Crossref | GoogleScholarGoogle Scholar | 20055519PubMed |
[15] J. Ho, M. L. Coote, Theor. Chem. Acc. 2010, 125, 3.
| Crossref | GoogleScholarGoogle Scholar |
[16] R. Casasnovas, D. Fernandiz, J. O. Castro, J. Frau, J. Donoso, F. Munoz, Theor. Chem. Acc. 2011, 130, 1.
| Crossref | GoogleScholarGoogle Scholar |
[17] T. N. Brown, N. Mora-Dı’ez, J. Phys. Chem. B 2006, 110, 9270.
| Crossref | GoogleScholarGoogle Scholar | 16671744PubMed |
[18] K. K. Govender, I. Cukrowski, J. Phys. Chem. A 2009, 113, 3639.
| Crossref | GoogleScholarGoogle Scholar | 19309100PubMed |
[19] K. K. Govender, I. Cukrowski, J. Phys. Chem. A 2010, 114, 1868.
| Crossref | GoogleScholarGoogle Scholar | 20063850PubMed |
[20] J Ho, A Klamt, M. L. Coote, J. Phys. Chem. A 2010, 114, 13442.
| Crossref | GoogleScholarGoogle Scholar | 21133342PubMed |
[21] R. Casasnovas, J. Frau, J. Ortega-Castro, A. Salvà, J. Donoso, F. Muñoz, J. Mol. Struct. THEOCHEM 2009, 912, 5.
| Crossref | GoogleScholarGoogle Scholar |
[22] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision E.01 2009 (Gaussian, Inc.: Wallingford, CT).
[23] R. Sanjeev, V. Jagannadham, A. A. Skelton, Aust. J. Chem. 2021, 74, 584.
| Crossref | GoogleScholarGoogle Scholar |
[24] R. Sanjeev, R. Ravi, V. Jagannadham, A. A. Skelton, Aust. J. Chem. 2017, 70, 90.
| Crossref | GoogleScholarGoogle Scholar |
[25] P. Lian, R. C. Johnston, J. M. Parks, J. C. Smith, J. Phys. Chem. A 2018, 122, 4366.
| Crossref | GoogleScholarGoogle Scholar | 29633840PubMed |
[26] B. Thapa, H. B. Schlegel, J. Phys. Chem. A 2016, 120, 5726.
| Crossref | GoogleScholarGoogle Scholar | 27327957PubMed |
[27] D. M. Camaioni, C. A. Schwerdtfeger, J. Phys. Chem. A 2005, 109, 10795.
| Crossref | GoogleScholarGoogle Scholar | 16863129PubMed |
[28] A. A. Isse, A Gennaro, J. Phys. Chem. B 2010, 114, 7894.
| Crossref | GoogleScholarGoogle Scholar | 20496903PubMed |
[29] C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2006, 110, 16066.
| Crossref | GoogleScholarGoogle Scholar | 16898764PubMed |
[30] A. V. Marenich, J. Ho, M. L. Coote, C. J. Cramer, D. G. Truhlar, Physiol. Chem. Phys. 2014, 16, 15068.
[31] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
| Crossref | GoogleScholarGoogle Scholar | 19366259PubMed |
[32] D. B. Chesnut, L. D. Quin, Heteroatom Chem. 2007, 18, 754.
| Crossref | GoogleScholarGoogle Scholar |
[33] E. Vessally, J. Struct. Chem. 2008, 49, 979.
| Crossref | GoogleScholarGoogle Scholar |
[34] I. V. Omelchenko, O. V. Shishkin, L. Gorb, J. Leszczynski, Struct. Chem. 2016, 27, 101.
| Crossref | GoogleScholarGoogle Scholar |
[35] L. D. Quin, W. L. Orton, Chem. Commun. 1979, 401.
[36] See pages 146 and 147 in: A. R. Katritzky, C. A. Ramsden, J. A. Joule, V. V. Zhdankin, Handbook of Heterocyclic Chemistry, 3rd edn 2010 (Elsevier: Amsterdam).
[37] L. D. Quin, J. G. Bryson, C. G. Moreland, J. Am. Chem. Soc. 1969, 91, 3308.
| Crossref | GoogleScholarGoogle Scholar |
[38] J. Ho, M. L. Coote, J. Chem. Theory Comput. 2009, 5, 295.
| Crossref | GoogleScholarGoogle Scholar | 26610106PubMed |
[39] M. Namazian, F. Kalantary-Fotooh, M. R. Noorbala, D. J. Searles, M. L. Coote, J. Mol. Struct. THEOCHEM 2006, 758, 275.
| Crossref | GoogleScholarGoogle Scholar |
[40] S. K. Burger, S. Liu, P. W. Ayers, J. Phys. Chem. A 2011, 115, 1293.
| Crossref | GoogleScholarGoogle Scholar | 21291187PubMed |
[41] W. A. Henderson, C. A. Streuli, J. Am. Chem. Soc. 1960, 82, 5791.
[42] N.-N. Pham-Tran, G. Bochoux, D. Delaere, M. T. Negyun, J. Phys. Chem. A 2005, 109, 2957.
| Crossref | GoogleScholarGoogle Scholar | 16833615PubMed |