Long-Chained Pyridinium N-Chloramines: Synthesis and Remarkable Biocidal Efficacies for Antibacterial Application
Lingdong Li A B C , Dongxue Jia B , Guangqing Zhang B and Hanxue Ma BA State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.
B School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China.
C Corresponding author. Email: lild@dlut.edu.cn
Australian Journal of Chemistry 74(5) 351-356 https://doi.org/10.1071/CH20354
Submitted: 4 December 2020 Accepted: 5 March 2021 Published: 30 March 2021
Abstract
Two types of long-chained pyridinium N-chloramines were designed and synthesised by covalent linking a N-chloramine unit and a long intact alkyl chain via varied alkylation of 3-hydroxypyridine. Preliminary antibacterial tests showed that both synthetic pyridinium N-chloramines exerted distinctively elevated biocidal efficacy in contrast to previously reported pyridinium N-chloramines that lack a long chain. Such enhanced bactericidal behaviour was probably caused by ‘synergistic’ biocidal action between the N-chloramine moiety and the long-chained pyridinium moiety.
Keywords: long-chained pyridinium salt, pyridinium N-chloramine, poly-step chemical synthesis, bactericidal application, remarkable biocidal efficacies, ‘synergistic’ biocidal effect.
References
[1] O. A. Ataguba, J. E. Ataguba, Glob. Health Action 2020, 13, 1788263.| Crossref | GoogleScholarGoogle Scholar | 32657669PubMed |
[2] P. Makvandi, R. Jamaledin, M. Jabbari, N. Nikfarjam, A. Borzacchiello, Dent. Mater. 2018, 34, 851.
| Crossref | GoogleScholarGoogle Scholar | 29678327PubMed |
[3] M. Kratky, J. Vinsova, Curr. Pharm. Des. 2013, 19, 1343.
| Crossref | GoogleScholarGoogle Scholar | 23116306PubMed |
[4] A. G. Xie, X. Cai, M. Lin, T. Wu, X. Zhang, Z. Lin, S. Tan, Mater. Sci. Eng. B 2011, 176, 1222.
| Crossref | GoogleScholarGoogle Scholar |
[5] A. Kanazawa, T. Ikeda, T. Endos, J. Polym. Sci., Part A Polym. Chem. 1993, 31, 2873.
| Crossref | GoogleScholarGoogle Scholar |
[6] A. Dong, Y. J. Wang, Y. Gao, T. Gao, G. Gao, Chem. Rev. 2017, 117, 4806.
| Crossref | GoogleScholarGoogle Scholar | 28252944PubMed |
[7] Y. Ma, J. Li, Y. Si, K. Huang, N. Nitin, G. Sun, ACS Appl. Mater. Interfaces 2019, 11, 17814.
| Crossref | GoogleScholarGoogle Scholar | 31022343PubMed |
[8] H. Haham, M. Natan, O. Gutman, M. Kolitz-Domb, E. Banin, S. Margel, ACS Appl. Mater. Interfaces 2016, 8, 18488.
| Crossref | GoogleScholarGoogle Scholar | 27348740PubMed |
[9] H. B. Kocer, S. D. Worley, R. M. Broughton, T. S. Huang, React. Funct. Polym. 2011, 71, 561.
| Crossref | GoogleScholarGoogle Scholar |
[10] R. Kaur, S. Liu, Prog. Surf. Sci. 2016, 91, 136.
| Crossref | GoogleScholarGoogle Scholar |
[11] W. Gottardi, D. Debabov, M. Nagl, Antimicrob. Agents Chemother. 2013, 57, 1107.
| Crossref | GoogleScholarGoogle Scholar | 23295936PubMed |
[12] (a) Z. Jie, X. Yan, L. Zhao, S. D. Worley, J. Liang, RSC Adv. 2014, 4, 6048.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. Li, T. Pu, G. Zhanel, N. Zhao, W. Ens, S. Liu, Adv. Healthc. Mater. 2012, 1, 609.
| Crossref | GoogleScholarGoogle Scholar |
[13] C. Ning, L. Li, S. Logsetty, S. Ghanbar, M. Guo, W. Ens, S. Liu, RSC Adv. 2015, 5, 93877.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) L. Li, Y. Zhao, H. Zhou, A. Ning, F. Zhang, Z. Zhao, Tetrahedron Lett. 2017, 58, 321.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. Li, H. Zhou, F. Gai, X. Chi, Y. Zhao, F. Zhang, Z. Zhao, RSC Adv. 2017, 7, 13244.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Li, D. Jia, H. Wang, C. Chang, J. Yan, Z. K. Zhao, New J. Chem. 2020, 44, 303.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. Li, Y. Jin, H. Zhou, H. Wang, Bioorg. Med. Chem. Lett. 2018, 28, 3665.
| Crossref | GoogleScholarGoogle Scholar |
(e) L. Li, H. Wang, Y. Jin, P. Wang, D. Jia, Chemistry Select 2019, 4, 11455.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) L. Li, X. Chi, F. Gai, H. Zhou, F. Zhang, Z. Zhao Kent, J. Appl. Polym. Sci. 2017, 134, 45323.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. Li, F. Zhang, F. Gai, H. Zhou, X. Chi, H. Wang, Z. Zhao, Can. J. Chem. 2018, 96, 939.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Li, X. Chi, J. Yan, Z. Zhao, Youji Huaxue 2018, 38, 955.
| Crossref | GoogleScholarGoogle Scholar |
[16] L. Zhou, X. Jiang, Y. Li, Z. Chen, X. Hu, Langmuir 2007, 23, 11404.
| Crossref | GoogleScholarGoogle Scholar | 17929950PubMed |
[17] (a) S. Omidi, A. Kakanejadifard, Carbohydr. Polym. 2019, 208, 477.
| Crossref | GoogleScholarGoogle Scholar | 30658826PubMed |
(b) P. Madaan, V. K. Tyagi, J. Oleo Sci. 2008, 57, 197.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. A. Ilies, W. A. Seitz, I. Ghiviriga, B. H. Johnson, A. Miller, E. B. Thompson, A. T. Balaban, J. Med. Chem. 2004, 47, 3744.
| Crossref | GoogleScholarGoogle Scholar |
[18] O. Tsuge, S. Kanemasa, T. Naritomi, J. Tanaka, Bull. Chem. Soc. Jpn. 1987, 60, 1497.
| Crossref | GoogleScholarGoogle Scholar |
[19] C. Yin, K. Zhong, W. Li, X. Yang, R. Sun, C. Zhang, X. Zheng, M. Yuan, R. Li, Y. Lan, H. Fu, H. Chen, Adv. Synth. Catal. 2018, 360, 3990.
| Crossref | GoogleScholarGoogle Scholar |
[20] V. Chauhan, S. Singh, R. Kamboj, R. Mishra, G. Kaur, J. Colloid Interface Sci. 2014, 417, 385.
| Crossref | GoogleScholarGoogle Scholar | 24407701PubMed |
[21] S. R. Malwal, L. Chen, H. Hicks, F. Qu, W. Liu, A. Shillo, W. X. Law, J. Zhang, N. Chandnani, X. Han, Y. Zheng, C. C. Chen, R. T. Guo, A. AbdelKhalek, M. N. Seleem, E. Oldfield, J. Med. Chem. 2019, 62, 2564.
| Crossref | GoogleScholarGoogle Scholar | 30730737PubMed |
[22] L. Caillier, E. T. de Givenchy, R. Levy, Y. Vandenberghe, S. Geribaldi, F. Guittard, Eur. J. Med. Chem. 2009, 44, 3201.
| Crossref | GoogleScholarGoogle Scholar | 19380184PubMed |