Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Novel Imidazophenazine-Based Stimuli Responsive Chemosensor for Highly Selective and Sensitive Fluorescence Detection of CN

Haixiong Shi https://orcid.org/0000-0002-8097-7932 A D , Juanjuan Hou A , Pengwei Jiang B , Quanlu Yang A , Qi Lin C , Taibao Wei C , Hong Yao C , Youming Zhang C and Shang Wu B
+ Author Affiliations
- Author Affiliations

A College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, Gansu 730000, China.

B Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest University for Nationalities, Lanzhou, Gansu 730030, China.

C College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.

D Corresponding author. Email: 18091663900@163.com

Australian Journal of Chemistry 74(5) 335-340 https://doi.org/10.1071/CH20299
Submitted: 8 October 2020  Accepted: 6 December 2020   Published: 30 December 2020

Abstract

A fluorescent imidazophenazine-based derivative (S) has been successfully synthesised, and can be used as a chemsensor for relay recognition of CN in DMSO/H2O (7 : 3, v/v) solution, which exhibited external stimuli-responsiveness. The sensor immediately responded with obvious colour changes (from red to purple) and fluorescent quenching when CN was added to the S solution. Its detection limit for CN is 2.16 × 10−7 M. In addition, NMR spectroscopy and density function theory calculations were also used to confirm the recognition mechanism. In particular, the fluorescence responding circle could be repeated three times by the sequential addition of CN and CH3COO or CN and HSO4. Moreover, a CN detection test paper was prepared using S, providing a convenient method for CN identification.


References

[1]  C. Miller, Nature 2006, 440, 484.
         | Crossref | GoogleScholarGoogle Scholar | 16554809PubMed |

[2]  R. Dutzler, E. B. Campbell, R. Mackinnon, Science 2003, 300, 108.
         | Crossref | GoogleScholarGoogle Scholar | 12649487PubMed |

[3]  R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, R. Mackinnon, Nature 2002, 415, 287.
         | Crossref | GoogleScholarGoogle Scholar | 11796999PubMed |

[4]  R. R. Copley, G. J. Barton, J. Mol. Biol. 1994, 242, 321.
         | 7932692PubMed |

[5]  J. J. He, F. A. Quiocho, Science 1991, 251, 1479.
         | Crossref | GoogleScholarGoogle Scholar | 1900953PubMed |

[6]  H. Luecke, F. A. Quiocho, Nature 1990, 347, 402.
         | Crossref | GoogleScholarGoogle Scholar | 2215649PubMed |

[7]  J. W. Pflugrath, F. A. Quiocho, Nature 1985, 314, 257.
         | Crossref | GoogleScholarGoogle Scholar | 3885043PubMed |

[8]  R. Koenig, Science 2000, 287, 1737.
         | Crossref | GoogleScholarGoogle Scholar | 10755922PubMed |

[9]  F. J. Baud, Hum. Exp. Toxicol. 2007, 26, 191.
         | Crossref | GoogleScholarGoogle Scholar | 17439922PubMed |

[10]  C. X. Zhang, K. Ji, X. Y. Wang, H. W. Wu, C. X. Liu, Chem. Commun. 2015, 51, 8173.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  L. G. Nandi, C. R. Nicoleti, I. C. Bellettini, V. G. Machado, Anal. Chem. 2014, 86, 4653.
         | Crossref | GoogleScholarGoogle Scholar | 24805864PubMed |

[12]  C. Panda, B. B. Dhar, B. Malvi, Y. Bhattacharjee, S. S. Gupta, Chem. Commun. 2013, 49, 2216.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y. Shiraishi, M. Nakamura, K. Yamamoto, T. Hirai, Chem. Commun. 2014, 50, 11583.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  L. Y. Wang, J. Q. Du, D. R. Cao, Sens. Actuators B Chem. 2014, 198, 455.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Z. Xu, X. Chen, H. N. Kim, J. Yoon, Chem. Soc. Rev. 2010, 39, 127.
         | Crossref | GoogleScholarGoogle Scholar | 20023843PubMed |

[16]  Y. H. Kim, J. I. Hong, Chem. Commun. 2002, 512.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  X. Chen, S. W. Nam, G. H. Kim, N. Song, Y. Jeong, I. Shin, S. K. Kim, J. Kim, S. Park, J. Yoon, Chem. Commun. 2010, 46, 8953.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  C. F. Chow, M. H. W. Lam, W. Y. Wong, Inorg. Chem. 2004, 43, 8387.
         | Crossref | GoogleScholarGoogle Scholar | 15606187PubMed |

[19]  J. H. Lee, A. R. Jeong, I. S. Shin, H. J. Kim, J. I. Hong, Org. Lett. 2010, 12, 764.
         | Crossref | GoogleScholarGoogle Scholar | 20092265PubMed |

[20]  H. S. Jung, J. H. Han, Z. H. Kim, C. Kang, J. S. Kim, Org. Lett. 2011, 13, 5056.
         | Crossref | GoogleScholarGoogle Scholar | 21875122PubMed |

[21]  H. J. Mo, Y. Shen, B. H. Ye, Inorg. Chem. 2012, 51, 7174.
         | Crossref | GoogleScholarGoogle Scholar | 22716094PubMed |

[22]  W. J. Jin, M. T. Fernández-Argüelles, J. M. Costa-Fernández, R. Pereiro, A. Sanz-Medel, Chem. Commun. 2005, 883.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  C. R. Maldonado, A. Touceda-Varela, A. C. Jonesa, J. C. Mareque-Rivas, Chem. Commun. 2011, 47, 11700.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  H. J. Kim, H. Lee, J. H. Lee, D. H. Choi, J. H. Jung, J. S. Kim, Chem. Commun. 2011, 47, 10918.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  B. Shi, P. Zhang, T. B. Wei, H. Yao, Q. Lin, J. Liu, Y. M. Zhang, Tetrahedron 2013, 69, 7981.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  C. Wang, G. Li, Q. Zhang, Tetrahedron Lett. 2013, 54, 2633.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  J. Y. Hu, R. Liu, X. L. Zhu, X. Cai, H. J. Zhu, Chin. Chem. Lett. 2015, 26, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  G. Li, Y. Wu, J. Gao, J. Li, Y. Zhao, Q. Zhang, Chem. Asian J. 2013, 8, 1574.
         | Crossref | GoogleScholarGoogle Scholar | 23606661PubMed |

[29]  J. Zhao, G. Li, C. Wang, W. Chen, S. C. J. Loo, Q. Zhang, RSC Adv. 2013, 3, 9653.

[30]  G. Li, H. M. Duong, Z. Zhang, J. Xiao, L. Liu, Y. Zhao, H. Zhang, F. Huo, S. Li, J. Ma, F. Wudl, Q. Zhang, Chem. Commun. 2012, 48, 5974.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  G. Li, Y. Wu, J. Gao, C. Wang, J. Li, H. Zhang, Y. Zhao, Y. Zhao, Q. Zhang, J. Am. Chem. Soc. 2012, 134, 20298.
         | Crossref | GoogleScholarGoogle Scholar | 23214449PubMed |

[32]  J. Li, J. Gao, G. Li, W. Xiong, Q. Zhang, J. Org. Chem. 2013, 78, 12760.
         | Crossref | GoogleScholarGoogle Scholar | 24299117PubMed |

[33]  J. Zhao, J. I. Wong, J. Gao, G. Li, G. Xing, H. Zhang, T. C. Sum, H. Y. Yang, Y. Zhao, S. L. A. Kjelleberg, W. Huang, S. C. J. Loo, Q. Zhang, RSC Adv. 2014, 4, 17822.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  J. Li, J. Gao, W. W. Xiong, P. Z. Li, H. Zhang, Y. Zhao, Q. Zhang, Chem. Asian J. 2014, 9, 121.
         | Crossref | GoogleScholarGoogle Scholar | 24347071PubMed |

[35]  S. Hiraoka, T. Okamoto, M. Kozaki, D. Shiomi, K. Sato, T. Takui, K. Okada, J. Am. Chem. Soc. 2004, 126, 58.
         | Crossref | GoogleScholarGoogle Scholar | 14709058PubMed |

[36]  E. Terada, T. Okamoto, M. Kozaki, M. E. Masaki, D. Shiomi, K. Sato, T. Takui, K. Okada, J. Org. Chem. 2005, 70, 10073.
         | Crossref | GoogleScholarGoogle Scholar | 16292842PubMed |

[37]  V. R. Thalladi, T. Smolka, A. Gehrke, R. Boese, R. Sustmann, New J. Chem. 2000, 24, 143.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  S. M. S. Chauhan, T. Bisht, B. Garg, Tetrahedron Lett. 2008, 49, 6646.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  B. B. Shi, P. Zhang, T. B. Wei, H. Yao, Q. Lin, J. Liu, Y. M. Zhang, Tetrahedron 2013, 69, 7981.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  G. Y. Gao, W. J. Qu, B. B. Shi, P. Zhang, Q. Lin, H. Yao, W. L. Yang, Y. M. Zhang, T. B. Wei, Spectrochim. Acta A 2014, 121, 514.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  A. O. El-Ballouli, Y. Zhang, S. Barlow, S. R. Marder, M. H. Al-Sayah, B. R. Kaafarani, Tetrahedron Lett. 2012, 53, 661.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  T. Ogata, Y. Yamamoto, Y. Wada, K. Murakoshi, M. Kusaba, N. Nakashima, A. Ishida, S. Takamuku, S. Yanagida, J. Phys. Chem. 1995, 99, 11916.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  E. J. Lee, T. H. Kim, H. S. Kim, PCT Int. Appl., WO 2012093862 A220120712 2012.

[44]  J. Liu, Y. Q. Xie, Q. Lin, B. B. Shi, P. Zhang, Y. M. Zhang, T. B. Wei, Sens. Actuators B Chem. 2013, 186, 657.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  Q. Lin, Z. Feng, T. T. Lu, J. Liu, H. Li, T. B. Wei, H. Yao, Y. M. Zhang, Sens. Actuators B Chem. 2017, 251, 250.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheese-man, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Strat-mann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Ste-fanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. John-son, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 09W 2009 (Gaussian, Inc.: Wallingford, CT).