Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Structure and Facile Synthesis of Proton-Conducting [Fe(CN)6]3– Bridged Cd-Complex

Wei-Min Ding A , Yao Zhao A , Hong-Yu Zhang A and Feng-Ming Zhang https://orcid.org/0000-0002-2738-306X A B
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, Harbin University of Science and Technology, No. 4, Linyuan Road, Harbin 150040, China.

B Corresponding author. Email: zhangfm80@163.com

Australian Journal of Chemistry 74(5) 357-361 https://doi.org/10.1071/CH20285
Submitted: 25 September 2020  Accepted: 11 March 2021   Published: 9 April 2021

Abstract

Proton-conducting materials are a key component of proton exchange membrane fuel cells (PEMFCs) and the advantage of clear structural information in crystal materials offers a pathway for the investigation of the proton-conducting mechanism and pathway. In this work, a new Cd2+ coordination polymer material (compound 1) with the formula {[Cd3(bipy)3(H2O)4][Fe(CN)6]2·2H2O·2(bipy)}n was successfully synthesized by a solution diffusion method and its proton conduction ability was further determined. Crystal structure analysis confirms the coordination of [Fe(CN)6]3–, 4,4′-bipyridine, and H2O molecules to Cd2+ in the three dimensional structure of compound 1. Also, we confirmed that compound 1 of 500–800 nm particle size could be synthesized on a large scale by a facile stirring method. Proton-conductivity analyses revealed that compound 1 shows a water-mediated proton conduction behaviour because the conductivity increased apparently with the increase of relative humidity. Further investigation shows that the highest proton-conductivity of 8.36 × 10−4 S cm−1 was observed at 60°C and 95 % relative humidity, and the mechanism analysis suggests a Vehicle mechanism exists in the proton conduction process of compound 1.

Keywords: coordination complex, proton conduction, large-scale synthesis, crystal structure.


References

[1]  B. C. H. Steele, A. Heinzel, Nature 2001, 414, 345.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  L. A.-W. Ellingsen, C. R. Hung, G. Majeau-Bettez, B. Singh, Z. Chen, M. S. Whittingham, A. H. Strømman, Nat. Nanotechnol. 2016, 11, 1039.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. Z. Jacobson, W. G. Colella, D. M. Golden, Science 2005, 308, 1901.
         | Crossref | GoogleScholarGoogle Scholar | 15976300PubMed |

[4]  Y. Yang, X. He, P. Zhang, Y. H. Andaloussi, H. Zhang, Z. Jiang, Y. Chen, S. Ma, P. Cheng, Z. Zhang, Angew. Chem. Int. Ed. 2020, 59, 3678.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  P. Champagne, D. Ester, D. Polan, V. E. Williams, V. Thangadurai, C. Ling, J. Am. Chem. Soc. 2019, 141, 9217.
         | Crossref | GoogleScholarGoogle Scholar | 31117641PubMed |

[6]  K.-D. Kreuer, S. J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 2004, 104, 4637.
         | Crossref | GoogleScholarGoogle Scholar | 15669165PubMed |

[7]  C. Laberty-Robert, K. Vallé, F. Pereira, C. Sanchez, Chem. Soc. Rev. 2011, 40, 961.
         | Crossref | GoogleScholarGoogle Scholar | 21218233PubMed |

[8]  F. Yang, G. Xu, Y. Dou, B. Wang, H. Zhang, H. Wu, W. Zhou, J.-R. Li, B. Chen, Nat. Energy 2017, 2, 877.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  F.-M. Zhang, L.-Z. Dong, J.-S. Qin, W. Guan, J. Liu, S.-L. Li, M. Lu, Y.-Q. Lan, Z.-M. Su, H.-C. Zhou, J. Am. Chem. Soc. 2017, 139, 6183.
         | Crossref | GoogleScholarGoogle Scholar | 28388068PubMed |

[10]  X. Wu, Y.-l. Hong, B. Xu, Y. Nishiyama, W. Jiang, J. Zhu, G. Zhang, S. Kitagawa, S. Horike, J. Am. Chem. Soc. 2020, 142, 14357.
         | Crossref | GoogleScholarGoogle Scholar | 32787252PubMed |

[11]  Y.-S. Wei, X.-P. Hu, Z. Han, X.-Y. Dong, S.-Q. Zang, T. C. W. Mak, J. Am. Chem. Soc. 2017, 139, 3505.
         | Crossref | GoogleScholarGoogle Scholar | 28192991PubMed |

[12]  W. J. Phang, W. R. Lee, K. Yoo, D. W. Ryu, B. Kim, C. S. Hong, Angew. Chem. Int. Ed. 2014, 53, 8383.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y. Yang, X. He, P. Zhang, Y. H. Andaloussi, H. Zhang, Z. Jiang, Y. Chen, S. Ma, P. Cheng, Z. Zhang, Angew. Chem. Int. Ed. 2020, 59, 3678.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  S. Kim, B. Joarder, J. A. Hurd, J. Zhang, K. W. Dawson, B. S. Gelfand, N. E. Wong, G. K. H. Shimizu, J. Am. Chem. Soc. 2018, 140, 1077.
         | Crossref | GoogleScholarGoogle Scholar | 29272575PubMed |

[15]  B. Joarder, J.-B. Lin, Z. Romero, G. K. H. Shimizu, J. Am. Chem. Soc. 2017, 139, 7176.
         | Crossref | GoogleScholarGoogle Scholar | 28510427PubMed |

[16]  S. Kim, K. W. Dawson, B. S. Gelfand, J. M. Taylor, G. K. H. Shimizu, J. Am. Chem. Soc. 2013, 135, 963.
         | Crossref | GoogleScholarGoogle Scholar | 23286895PubMed |

[17]  S. S. Nagarkar, S. M. Unni, A. Sharma, S. Kurungot, S. K. Ghosh, Angew. Chem. Int. Ed. 2014, 53, 2638.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  S. Horike, D. Umeyama, M. Inukai, T. Itakura, S. Kitagawa, J. Am. Chem. Soc. 2012, 134, 7612.
         | Crossref | GoogleScholarGoogle Scholar | 22512400PubMed |

[19]  X. Liang, F. Zhang, W. Feng, X. Zou, C. Zhao, H. Na, C. Liu, F. Sun, G. Zhu, Chem. Sci. (Camb.) 2013, 4, 983.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. Bazaga-García, R. M. P. Colodrero, M. Papadaki, P. Garczarek, J. Zoń, P. Olivera-Pastor, E. R. Losilla, L. León-Reina, M. A. G. Aranda, D. Choquesillo-Lazarte, K. D. Demadis, A. Cabeza, J. Am. Chem. Soc. 2014, 136, 5731.
         | Crossref | GoogleScholarGoogle Scholar | 24641594PubMed |

[21]  D.-W. Lim, M. Sadakiyo, H. Kitagawa, Chem. Sci. 2019, 10, 16.
         | Crossref | GoogleScholarGoogle Scholar | 30746070PubMed |

[22]  S.-J. Liu, C. Cao, F. Yang, M.-H. Yu, S.-L. Yao, T.-F. Zheng, W.-W. He, H.-X. Zhao, T.-L. Hu, X.-H. Bu, Cryst. Growth Des. 2016, 16, 6776.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  S. Liu, Z. Yue, Y. Liu, Dalton Trans. 2015, 44, 12976.
         | Crossref | GoogleScholarGoogle Scholar | 26126755PubMed |

[24]  Y. Ye, W. Guo, L. Wang, Z. Li, Z. Song, J. Chen, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 2017, 139, 15604.
         | Crossref | GoogleScholarGoogle Scholar | 29072912PubMed |

[25]  X. Zhao, C. Mao, X. Bu, P. Feng, Chem. Mater. 2014, 26, 2492.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M. Sadakiyo, H. Ōkawa, A. Shigematsu, M. Ohba, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2012, 134, 5472.
         | Crossref | GoogleScholarGoogle Scholar | 22409393PubMed |

[27]  X.-Y. Dong, R. Wang, J.-B. Li, S.-Q. Zang, H.-W. Hou, T. C. W. Mak, Chem. Commun. 2013, 49, 10590.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  K.-D. Kreuer, Chem. Mater. 1996, 8, 610.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  K.-D. Kreuer, A. Rabenau, W. Weppner, Angew. Chem. Int. Ed. Engl. 1982, 21, 208.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  P. Ramaswamy, N. E. Wong, G. K. H. Shimizu, Chem. Soc. Rev. 2014, 43, 5913.
         | Crossref | GoogleScholarGoogle Scholar | 24733639PubMed |